Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1708-1720, 2017
Insight into adsorption mechanism of cationic dye onto agricultural residues-derived hydrochars: Negligible role of π-π interaction
Hydrochars derived from golden shower pod (GSH), coconut shell (CCH), and orange peel (OPH) were synthesized and applied to remove methylene green (MG5). The results indicated that the hydrochars possessed low specific surface areas (6.65-14.7m2/g), but abundant oxygen functionalities (1.69-2.12mmol/g). The hydrochars exhibited cellular and spherical morphologies. Adsorption was strongly dependent on the solution pH (2-10) and ionic strength (0-0.5M NaCl). Equilibrium can be quickly established in the kinetic study (60-120 min). The maximum Langmuir adsorption capacities at 30 °C followed the order GSH (59.6mg/g)>CCH (32.7mg/g)>OPH (15.6mg/g)> commercial glucose-prepared hydrochar (12.6mg/g). The dye adsorption efficiency was determined by the concentrations of oxygen-containing functionalities on the hydrochar surface. The adsorption process occurred spontaneously (-ΔG°) and exothermically (-ΔH°). Desorption studies confirmed the reversible adsorption process. Oxygenation of the hydrochar surface through a hydrothermal process with acrylic acid contributed to increasing MG5 adsorption and identifying the negligible role of π-π interaction to the adsorption process. The analysis of Fourier transform infrared spectrometry demonstrated that the aromatic C=C peak did not significantly decrease in intensity or shift toward higher/lower wavenumbers after adsorption, which further confirms the insignificant contribution of π-π interaction. Electrostatic attraction played a major role in adsorption mechanisms, while minor contributions were accounted for hydrogen bonding and n-π interactions. The primary adsorption mechanisms of MG5 onto hydrochar were similar to biosorbent, but dissimilar to biochar and activated carbon (i.e., π-π interaction and pore filling).
[References]
  1. Chequer FMD, de Oliveira GAR, Ferraz ERA, Cardoso JC, Zanoni MVB, de Oliveira DP, Eco-friendly Textile Dyeing and Finishing, INTECH Publishers, 151 (2013).
  2. Raval NP, Shah PU, Shah NK, Environ. Sci. Pollut. Res., 23, 14810, 2016
  3. Crini G, Bioresour. Technol., 97(9), 1061, 2006
  4. Contreras E, Sepulveda L, Palma C, Int. J. Chem. Eng., 2012, 1, 2012
  5. Feng NC, Guo XY, Liang S, J. Hazard. Mater., 164(2-3), 1286, 2009
  6. Tran HN, You SJ, Chao HP, Waste Manage. Res., 34, 129, 2016
  7. Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK, J. Ind. Eng. Chem., 40, 1, 2016
  8. Tran HN, Wang YF, You SJ, Chao HP, Trans. IChemE Process Saf. Environ. Prot., (2017), DOI:10.1016/j.psep.2017.02.010.
  9. Tran HN, You SJ, Chao HP, J. Environ. Manage., 188, 322, 2017
  10. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fuhner C, Bens O, Kern J, Emmerich KH, Biofuels., 2, 71, 2011
  11. Jain A, Balasubramanian R, Srinivasan MP, Chem. Eng. J., 283, 789, 2016
  12. Tran HN, You SJ, Chao HP, Adsorpt. Sci. Technol., (2017), DOI:10.1177/0263617416684837.
  13. Funke A, Ziegler F, Biofuel. Bioprod. Bior., 4, 160, 2010
  14. Tran HN, Huang FC, Lee CK, Chao HP, Green Process. Synth., (2017), DOI:10.1515/gps-2016-0178.
  15. Goertzen SL, Theriault KD, Oickle AM, Tarasuk AC, Andreas HA, Carbon, 48, 1252, 2010
  16. Sevilla M, Fuertes AB, Chem. Eur. J., 15, 4195, 2009
  17. Sevilla M, Fuertes AB, Carbon, 47, 2281, 2009
  18. Sevilla M, Macia-Agullo JA, Fuertes AB, Biomass Bioenerg., 35(7), 3152, 2011
  19. Sevilla M, Fuertes AB, Mokaya R, Energy Environ. Sci., 4, 1400, 2011
  20. Dogan M, Abak H, Alkan M, J. Hazard. Mater., 164(1), 172, 2009
  21. Guo Y, Yang S, Fu W, Qi J, Li R, Wang Z, Xu H, Dyes Pigments, 56, 219, 2003
  22. Lagergren S, Ksver. Veterskapsakad. Handl., 24, 1, 1898
  23. Blanchard G, Maunaye M, Martin G, Water Res., 18, 1501, 1984
  24. Chien SH, Clayton WR, Soil Sci. Soc. Am. J., 44, 265, 1980
  25. Tran HN, You SJ, Chao HP, Chem. Eng. Commun., (2017), DOI:10.1016/j.watres.2017.04.014.
  26. Tran HN, You SJ, Chao HP, J. Environ. Chem. Eng., 4, 2671, 2016
  27. Mattson JA, Mark HB, Malbin MD, Weber WJ, Crittenden JC, J. Colloid Interface Sci., 31, 116, 1969
  28. Xing B, McGill WB, Dudas MJ, Maham Y, Hepler L, Environ. Sci. Technol., 28, 466, 1994
  29. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J, Chemistry and physics of carbon, Marcel Dekker, Inc., New York, 27, 227 (2000).
  30. Coughlin RW, Ezra FS, Environ. Sci. Technol., 2, 291, 1968
  31. Blackburn RS, Environ. Sci. Technol., 38, 4905, 2004
  32. Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN, J. Environ. Manage., 69, 229, 2003
  33. Huff MD, Lee JW, J. Environ. Manage., 165, 17, 2016
  34. Demir-Cakan R, Baccile N, Antonietti M, Titirici MM, Chem. Mater., 21, 484, 2009
  35. Xu J, Wang L, Zhu YF, Langmuir, 28(22), 8418, 2012