Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1678-1692, 2017
Determination of thermal decomposition kinetics of low grade coal employing thermogravimetric analysis
The decomposition kinetics of low grade coals was studied and compared with the kinetics of higher grade coals using thermogravimetric analysis. The effect of atmospheres (air, O2 and N2) on coal decomposition kinetics was also investigated. Experiments were carried out under non-isothermal conditions from room temperature to 950 °C at a heating rate of 10 °C/min. Three kinetic models--multiple linear regression equation, unreacted shrinking core and continuous reaction--were used to determine the kinetic parameters of coal decomposition. From the kinetic parameters determined through the multiple linear regression equation, coal type and the atmosphere had an effect on coal decomposition kinetics. Also, there was some variation in the kinetic parameters of coal decomposition determined by the chosen kinetic models. However, the model employing multiple linear regressions yielded consistent results with respect to theoretical background. Under air, the order of the secondary decomposition of coal samples was found to be 0.88, 1.33, 1.69 and 1.52 for samples A, B, C and D, respectively. The order of the secondary decomposition of coal samples when operated under O2 was 1.09, 1.45, 2.36 and 1.81 for samples A, B, C and D, respectively. Under N2, the order of the secondary decomposition of coal samples was 0.72, 0.79, 1.15 and 1.02 for samples A, B, C and D, respectively.
[References]
  1. Sutcu H, J. Chin. Inst. Chem. Eng., 38(3-4), 245, 2007
  2. Kern S, Pfeifer C, Hofbauer H, Energy Technol., 1, 253, 2013
  3. Hook M, Aleklett K, Int. J. Energy Res., 34(10), 848, 2010
  4. Zhou X, Li W, Mabon R, Broadbelt LJ, Energy Technol., 4, 1, 2016
  5. Da Silva Filho CG, Milioli FE, Quimica Nova, 31, 98, 2008
  6. Anthony DB, Howard JB, AIChE J., 22, 625, 1976
  7. Hong B, Wang X, Zhou Z, Yu G, Energy Technol., 1, 449, 2013
  8. Wang Q, Wang G, Li W, Chen B, Energy Technol., 4, 751, 2016
  9. Wang Q, Zhang R, Luo Z, Fang M, Cen K, Energy Technol., 4, 543, 2016
  10. Zhang R, Wang Q, Luo Z, Fang M, Cen K, Energy Technol., 3, 1059, 2015
  11. Davini P, Ghetti P, Bonfanti L, de Michele G, Fuel, 75, 1083, 1996
  12. Chen Y, Mori S, Pan WP, Thermochim. Acta, 275(1), 149, 1996
  13. Crelling JC, Hippo EJ, Woerner BA, West DP, Fuel, 71, 151, 1992
  14. Levenspiel O, Chemical Reaction Engineering, Third Edit, John Wiley & Sons, New York, United States (1999).
  15. Morgan PA, Robertson D, Unsworth JF, Fuel, 65, 1546, 1986
  16. Vuthaluru HB, Bioresour. Technol., 92(2), 187, 2004
  17. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F, Bioresour. Technol., 101(14), 5601, 2010
  18. Ozawa T, Bulletin of the Chem. Soc. Japan, 38, 1881, 1965
  19. Heireche L, Belhadji M, Chalcogenide Lett., 4, 23, 2007
  20. Otero M, Calvo LF, Gil MV, Garcia AI, Moran A, Bioresour. Technol., 99(14), 6311, 2008
  21. Biswas S, Choudhury N, Sarkar P, Mukherjee A, Sahu SG, Boral P, Choudhury A, Fuel Process. Technol., 87(3), 191, 2006
  22. Yuzbasi NS, Selcuk N, Fuel Process. Technol., 92(5), 1101, 2011
  23. Nunes KGP, Marcilio NR, Brazilian J. Chem. Eng, 32, 211, 2015
  24. Sheeba KN, Babu JSC, Jaisankar S, Energy Sources Part A-Recovery Util. Environ. Eff., 32(19), 1837, 2010
  25. Mansaray KG, Ghaly AE, Energy Sources, 21(10), 899, 1999
  26. Kumar A, Wang LJ, Dzenis YA, Jones DD, Hanna MA, Biomass Bioenerg., 32(5), 460, 2008
  27. Park DK, Kim SD, Lee SH, Lee JG, Bioresour. Technol., 101(15), 6151, 2010
  28. Costa VJ, Krioukov VG, Maliska CR, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, 661, 2014
  29. Cheremisinoff NP, Cheremisinoff PN, Particle Properties and Characterization, Gulf Publishing Company, Houston, Texas (1985).
  30. Tolvanen H, Kokko L, Raiko R, The Factors Controlling Combustion and Gasification Kinetics of Solid Fuels, Pitea, Sweden (2011).
  31. Channiwala SA, Parikh PP, Fuel, 81(8), 1051, 2002
  32. Basu P, Biomass Gasification and Pyrolysis Practical Design and Theory, Academic Press, Burlington (2010).
  33. Zhu Q, Coal Sampling and Analysis Standards, London, United Kingdom (2010).
  34. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ, Bioresour. Technol., 101(12), 4584, 2010
  35. Kneller WA, Thermochim. Acta, 108, 357, 1986
  36. Lin YS, Ma XQ, Ning XX, Yu ZS, Energy Conv. Manag., 89, 727, 2015
  37. Mansaray KG, Ghaly AE, Energy Sources, 21(5), 453, 1999
  38. Goldfarb IJ, McGughan R, Meeks AC, Kinetic Analysis of Thermogravimetry. Part II. Programmed Temperature, Ohio (1969).
  39. Mansaray KG, Ghaly AE, Biomass Bioenerg., 17(1), 19, 1999
  40. Yagi S, Kunii D, Chem. Eng. Sci., 16, 364, 1961
  41. Yagi S, Kunii D, Chem. Eng. Sci., 16, 372, 1961
  42. Yagi S, Kunii D, Chem. Eng. Sci., 16, 380, 1961
  43. Barranco R, Rojas A, Barraza J, Lester E, Fuel, 88(12), 2335, 2009
  44. Bledzki AK, Mamun AA, Volk J, Compos. Pt. A-Appl. Sci. Manuf., 41, 480, 2010
  45. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C, Maejo International Journal of Science and Technology, 6, 186, 2012
  46. Mansaray KG, Ghaly AE, Energy Sources, 19(9), 989, 1997
  47. Hecht ES, Shaddix CR, Geier M, Molina A, Haynes BS, Combust. Flame, 159(11), 3437, 2012
  48. Yu JL, Tahmasebi A, Han YN, Yin FK, Li XC, Fuel Process. Technol., 106, 9, 2013
  49. Xia WC, Yang JG, Liang C, Powder Technol., 237, 1, 2013
  50. Sakaguchi M, Laursen K, Nakagawa H, Miura K, Fuel Process. Technol., 89(4), 391, 2008
  51. Jia LF, Anthony EJ, Fuel Process. Technol., 92(11), 2138, 2011
  52. WHO, Air Quality Guidelines for Europe, Copenhagen (2000).
  53. Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy, 35(7), 2814, 2010
  54. Wang X, Zhu H, Wang X, Liu H, Wang F, Yu G, Energy Technol., 2, 598, 2014
  55. Khan AA, de Jong W, Jansens PJ, Spliethoff H, Fuel Process. Technol., 90(1), 21, 2009
  56. Gil MV, Riaza J, Alvarez L, Pevida C, Pis JJ, Rubiera F, Journal of Thermal Analysis and Calorimetry, 109, 49, 2012
  57. Parthasarathy P, Narayanan KS, Arockiam L, Biomass Bioenerg., 58, 58, 2013
  58. Mansaray KG, Ghaly AE, Energy Sources, 21(9), 773, 1999
  59. Nassar MM, Energy Sources, 21(1-2), 131, 1999
  60. Wang CP, Wang FY, Yang QR, Liang RG, Biomass Bioenerg., 33(1), 50, 2009
  61. Kaitano R, Characterisation and Reaction Kinetics of High Ash Chars Derived from Inertinite-Rich Coal, Ph.D Thesis, North-West University, Potchefstroom Campus, South Africa (2007).
  62. Zhang Z, An Experimental Study of Catalytic Effects on Reaction Kinetics and Producer Gas in Gasification of Coal-Biomass Blend Chars with Steam, M.E. Thesis, University of Canterbury (2011).
  63. Gunes M, Gunes S, Energy Sources, 27(8), 749, 2005
  64. Ghaly AE, Mansaray KG, Energy Sources, 21(10), 867, 1999
  65. Peterson JD, Vyazovkin S, Wight CA, Macromol. Chem. Phys., 202, 775, 2001