Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1651-1660, 2017
Perovskite-type LaFe1- xMnxO3 (x=0, 0.3, 0.5, 0.7, 1.0) oxygen carriers for chemical-looping steam methane reforming: Oxidation activity and resistance to carbon formation
The effects of Mn substitution of LaMnxFe1-xO3 (x=0, 0.3, 0.5, 0.7, 1.0) on the oxidation activity and resistance to carbon formation for chemical-looping steam methane reforming (CL-SMR) were investigated. The desired crystalline perovskite phases were formed by transferring from the orthorhombic structure of LaFeO3 to rhombohedral lattice of LaMnO3 as the degree of Mn-doping increased. Manganese ions have a mixed state of Mn3+ and Mn4+ in the LaFe1-xMnxO3, meanwhile inducing the states of highly mixed character of Fe2+, Fe3+ and Fe4+ in iron ions. Substitution of Mn for Fe with proper value not only increases the lattice oxygen, which is conducive to the partial oxidation of CH4 to produce syngas, but also enhances the lattice oxygen mobility from the bulk to the surface of the oxygen carrier particles. Judging from the points of the redox reactivity, resistance to carbon formation and hydrogen generation capacity, the optimal range of the degree of Mn substitution is x=0.3-0.5.
[References]
  1. Li KZ, Wang H, Wei YG, Yan DX, Chem. Eng. J., 156(3), 512, 2010
  2. Otsuka K, Ushiyama T, Yamanaka I, Chem. Lett., 9, 1517, 1993
  3. Richter HJ, Knoche KF, ACS Symp. Ser., 235, 71, 1983
  4. Li KZ, Wang H, Wei YG, Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers, J. Chem. 2013, Article ID 294817, 8 pages.
  5. Dai XP, Li RJ, Yu CC, Hao ZP, J. Phys. Chem. B, 110(45), 22525, 2006
  6. Li RJ, Yu CC, Dai XP, Shen SK, Chin. J. Cata., 23, 549, 2002
  7. Ryden M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjørgum E, Int. J. Greenh. Gas. Con., 2, 21, 2008
  8. Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrog. Energy, 34(17), 7162, 2009
  9. Garcia V, Caldes MT, Joubert O, Gautron E, Mondragon F, Moreno A, Catal. Today, 157(1-4), 177, 2010
  10. Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrog. Energy, 36(11), 6657, 2011
  11. Neal LM, Shafiefarhood A, Li FX, ACS Catal., 4, 3560, 2014
  12. Lim HS, Kang D, Lee JW, Appl. Catal. B: Environ., 202, 175, 2017
  13. Ryden M, Leion H, Mattisson T, Lyngfelt A, Appl. Energy, 113, 1924, 2014
  14. Azimi G, Leion H, Ryden M, Mattisson T, Lyngfelt A, Energy Fuels, 27(1), 367, 2013
  15. Wei HJ, Cao Y, Ji WJ, Au CT, Catal. Commun., 9, 2509, 2008
  16. He F, Li XN, Zhao K, Huang Z, Wei GQ, Li HB, Fuel, 108, 465, 2013
  17. Zhao K, He F, Huang Z, Wei GQ, Zheng AQ, Li HB, Zhao ZL, Appl. Energy, 168, 193, 2016
  18. Li JD, Luo GS, Jiang GW, Li WS, Zhou ZY, J. Nanchang University, 34, 279, 2010
  19. Jauhar S, Dhiman M, Bansal S, Singhal S, J. Sol. Gel. Sci. Technol., 75, 124, 2015
  20. Atribak I, Bueno-Lopez A, Garcia-Garcia A, J. Catal., 259(1), 123, 2008
  21. Kan WH, Dong PC, Bae JS, Adams S, Thangadurai V, Solid State Ion., 290, 90, 2016
  22. Tabata K, Hirano Y, Suzuki E, Appl. Catal. A: Gen., 170(2), 245, 1998
  23. Li X, Zhang HB, Liu XX, Li SJ, Zhao MY, Mater. Chem. Phys., 38, 355, 1994
  24. Mihai O, Chen D, Holmen A, J. Catal., 293, 175, 2012