Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1630-1637, 2017
Computational fluid dynamics study on the anode feed solid polymer electrolyte water electrolysis
A steady-state two-dimensional model for the anode feed solid polymer electrolyte water electrolysis (SPEWE) is proposed in this paper. Finite element procedure was employed to calculate the multicomponent transfer model coupled with fluid flow in flow channels and gas diffusion layers and electrochemical kinetics in catalyst reactive surface. The performance of the anode feed SPEWE predicted by this model was compared with the published experimental results and reasonable agreement was reached. The results show that oxygen mass fraction increases because of the water oxidation when water flows from the import to the export on the anode side. On the cathode side, hydrogen mass fraction varies little since hydrogen and water mix well. The flux of water across the electrolyte increased almost linearly with the increase of the applied current density. Since the ohmic overpotential loss increasing as the solid polymer electrolytes’ thickness increasing, the performance of the anode feed SPEWE with Nafion 112, 115, 117 decreases at the same applied current density.
[References]
  1. Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901, 2013
  2. Millet P, Electrochim. Acta, 39(17), 2501, 1994
  3. Millet P, Pineri M, Durand R, J. Appl. Electrochem., 19, 162, 1989
  4. Rasten E, Hagen G, Tunold R, Electrochim. Acta, 48(25-26), 3945, 2003
  5. Gorgun H, Int. J. Hydrog. Energy, 31(1), 29, 2006
  6. Zhang YJ, Wang C, Wan NF, Liu ZX, Mao ZQ, Electrochem. Commun., 9, 667, 2007
  7. Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E, Electrochim. Acta, 52(12), 3889, 2007
  8. Grigoriev SA, Millet P, Fateev VN, J. Power Sources, 177(2), 281, 2008
  9. Chattopadhyay J, Srivastava R, Srivastava PK, Korean J. Chem. Eng., 30(8), 1571, 2013
  10. Goldberg AB, Kheifets LI, Vaganov AG, Ogryz’ko-Zhukovskaya SG, Shabalin AV, J. Appl. Electrochem., 22, 1147, 1992
  11. Onda K, Murakami T, Hikosaka T, Kobayashi M, Notu R, Ito K, J. Electrochem. Soc., 149(8), A1069, 2002
  12. Choi PH, Bessarabov DG, Datta R, Solid State Ion., 175(1-4), 535, 2004
  13. Awasthi A, Scott K, Basu S, Int. J. Hydrog. Energy, 36(22), 14779, 2011
  14. Bockris JOM, Srinivasan S, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).
  15. Thampan T, Malhotra S, Zhang JX, Datta R, Catal. Today, 67(1-3), 15, 2001
  16. Bard AJ, Faulkner LR, Electrochemical Methods, Wiley, New York (1980).
  17. Li XG, Principles of fuel cells, Taylor & Francis (2006).
  18. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S, Electrochim. Acta, 40(3), 297, 1995
  19. Motupally S, Becker AJ, Weidner JW, J. Electrochem. Soc., 147(9), 3171, 2000
  20. Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334, 1991
  21. Perry RH, Green DW, Perry’s Chemical Engineer’s Handbook, Seventh Ed. (1997).
  22. Zawodzinski TA, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S, J. Electrochem. Soc., 140, 1981, 1993
  23. Wu H, Berg P, Li XG, J. Power Sources, 165(1), 232, 2007
  24. Guvelioglu GH, Stenger HG, J. Power Sources, 147(1-2), 95, 2005
  25. Fuller TF, Newman J, J. Electrochem. Soc., 5, 1218, 1993
  26. Meng H, Wang CY, Chem. Eng. Sci., 59(16), 3331, 2004
  27. Scott K, Taama W, Cruickshank J, J. Power Sources, 65, 159, 1997
  28. Sportsman S, Way D, Pez G,The 13th annual meeting of the North American Membrane Society, Long Beach, California (2002).