Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1604-1618, 2017
Feasibility study and benefit analysis of biomass-derived energy production strategies with a MILP (mixed-integer linear programming) model: Application to Jeju Island, Korea
We developed a new approach to analyze the feasibility and benefits of biomass utilization strategies for energy production. To achieve this goal, we first generated a biomass-to-energy network which consists of different conversion technologies and corresponding compounds. We then developed new optimization models using a mixed integer linear programming technique to identify the optimal and alternative strategies and point out their major cost drivers. We applied these models to the biomass-derived energy supply problem on Jeju Island, Korea, to answer a wide range questions related to biomass utilization. What is the cheapest way to produce liquid fuels from available biomass on Jeju Island? How much demand can be satisfied by biomass-derived liquid fuels? What combination of technologies and biomass resources gives the best economic benefits or productivity? Based on the case study of Jeju Island, we could provide useful guidelines to policy-makers and stakeholders in the energy business.
[References]
  1. Sammons N, Eden M, Yuan W, Cullinan H, Aksoy B, Environ. Prog., 26(4), 349, 2007
  2. Shin I, Park G, Lee J, Kim E, Kim Y, 2014 IEEE Conference and Expo, 1 (2014).
  3. Han M, Kim Y, Cho WS, Cho GW, Chung BW, Korean J. Chem. Eng., 33(1), 223, 2016
  4. Gutierrez LF, Sanchez OJ, Cardona CA, Bioresour. Technol., 100(3), 1227, 2009
  5. Wright M, Brown RC, Biofuel. Bioprod. Bior., 1(3), 191, 2007
  6. Clark JH, J. Chem. Technol. Biotechnol., 82(7), 603, 2007
  7. Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236, 2015
  8. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lucas J, NREL/LP-510-32438 (2002).
  9. Brennan M, Specca D, Schilling B, Tulloch D, Paul S, Sullivan K, Helsel Z, Hayes P, Melillo J, Simkins B, New Jersey Agr. Exp. Station Publ., 1, 2007
  10. Ghatak HR, Renew. Sust. Energ. Rev., 15(8), 4042, 2011
  11. Braden DJ, Henao CA, Heltzel J, Maravelias CC, Dumesic JA, Green Chem., 13(7), 1755, 2011
  12. Sen SM, Henao CA, Braden DJ, Dumesic JA, Maravelias CT, Chem. Eng. Sci., 67(1), 57, 2012
  13. Hosseini SA, Shah N, Interface Focus., 1(2), 255, 2011
  14. Piccolo C, Bezzo F, Biomass Bioenerg., 33(3), 478, 2009
  15. Kazi FK, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A, NREL/TP-6A2-46588 (2010).
  16. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G, Fuel, 89, S20, 2010
  17. Hosseini SA, Lambert R, Kucherenko S, Shah N, Energy Fuels, 24(9), 4673, 2010
  18. Ngamprasertsith S, Sunphorka S, Kuchonthara P, Reubroycharoen P, Sawangkeaw R, Korean J. Chem. Eng., 32(10), 2007, 2015
  19. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A, Fuel, 89, S29, 2010
  20. Brown TR, Wright MM, Brown RC, Biofuel. Bioprod. Bior., 5(1), 54, 2011
  21. Larson ED, Consonni S, Katofsky RE, Iisa K, Frederick W, DE-FG26-04NT42260, Princeton Environmental Institute, Princeton University, Princeton, NJ, 21 (2006).
  22. Dornburg V, Faaij APC, Meuleman B, Resour. Conserv. Recycl., 49(1), 68, 2006
  23. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14(2), 578, 2010
  24. Chambost V, Stuart PR, Ind. Biotechnol., 3(2), 112, 2007
  25. James LK, Swinton SM, Thelen KD, Agron. J., 102(2), 675, 2010
  26. Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012, 2011
  27. Kim JW, Lee SH, Kim SS, Park SH, Jeon JK, Park YK, Korean J. Chem. Eng., 28(9), 1867, 2011
  28. Um SI, Jung J, Choi S, Won J, Lee J, J. Energ. Clim. Change, 5(1), 155, 2010
  29. Woo YB, Cho S, Kim J, Kim BS, Int. J. Hydrog. Energy, 41(12), 5405, 2016
  30. Kokossis AC, Yang AD, Comput. Chem. Eng., 34(9), 1397, 2010
  31. Santibanez-Aguilar JE, Gonzalez-Campos JB, Ponce-Ortega JM, Serna-Gonzalez M, El-Halwagi MM, Ind. Eng. Chem. Res., 50(14), 8558, 2011
  32. Garcia DJ, You FQ, AIChE J., 61(2), 530, 2015
  33. Kim J, Sen SM, Maravelias CT, Energy Environ. Sci., 6(4), 1093, 2013
  34. Maronese S, Ensinas AV, Mian A, Lazzaretto A, Marechal F, Ind. Eng. Chem. Res., 54(28), 7038, 2015
  35. Kim S, Won W, Kim J, Renew. Energy, 97(1), 177, 2016
  36. No K, Jeon Y, Yang J, Cheon H, Jeong S, Korea Livestock Economic Institute (KLEI/K10-06) (2010).
  37. Kook JW, Lee SH, Appl. Chem. Eng., 26(2), 178, 2015
  38. Park YC, Kim DS, Huh J, Kim YG, World Renewable Energy Congress (ISBN 978-91-7393-070-3) (2011).
  39. Seo Y, Current MSW Management and Waste-to-Energy Status in the Republic of Korea, Columbia University, New York (2013).
  40. Kook JW, Lee SH, Appl. Chem. Eng., 26(2), 178, 2015
  41. Bae J, Korean energy economic review (ISBN 978-89-5504-228-3) (2009).
  42. Min EJ, Kim S, Korean energy economic review, 7(1), 133, 2008
  43. Castillo L, Dorao C, J. Nat. Gas. Sci. Eng., 2(6), 302, 2010
  44. Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP, Chem. Eng. J., 160(1), 311, 2010
  45. Lim M, Bang J, Yoon Y, Trans. Korean Hydrog. New Energy Soc., 17(2), 218, 2006
  46. Sloan M, Meyer R, ICF International, Inc., Propane Education & Research Council: Washington, DC (2009).
  47. Rushton M, CanBio Annual Conference (2012).
  48. Schwartz TJ, van Heiningen AR, Wheeler MC, Green Chem., 12(8), 1353, 2010
  49. Chetty R, Scott K, J. New Mat. Electrochem. Syst., 10(3), 135, 2007
  50. Supple D, MIT Energy Club, http://web.mit.edu/mit_energy (latest update 04.15.07) (2007).
  51. Lassi U, Keiski R, Kordas K, Mikkola J, Energy Research at the University of Oulu (2009).
  52. Wood Resources International LLC, North American Wood Fiber Review 06-11 (2011).
  53. Ash M, United States Department of Agriculture (OCS-15c) (2015).
  54. Lee Y, Kim K, Jang Y, Park K, RDA Interrobang, 99, 2013
  55. Boundy B, Diegel SW, Wright L, Davis SC, United States Department of Energy (ORNL/TM-2011/446) (2011).
  56. Yun J, Korea Institute of Industrial Technology (KITECH 06-14) (2014).
  57. Pfeffer M, Wukovits W, Beckmann G, Friedl A, Appl. Therm. Eng., 27(16), 2657, 2007
  58. Ahmetovic E, Martin M, Grossmann IE, Ind. Eng. Chem. Res., 49(17), 7972, 2010
  59. Dornburg V, Faaij AP, Resour. Conserv. Recycl., 48(3), 227, 2006
  60. Palsson BO, Fathi-Afshar S, Rudd DF, Lightfoot EN, Science, 213, 513, 1981
  61. Jimenez A, Chavez O, Chem. Eng. J., 37(1), B1, 1988
  62. Dimian AC, Comput. Aided Chem. Eng., 24, 309, 2007
  63. Batsy DR, Solvason CC, Sammons NE, Chambost V, Bilhartz DL, II MRE, El-Halwagi MM, Stuart PR, Integrated Biorefineries: Design, Analysis, and Optimization, 1 (2012).
  64. Kamm B, Kamm M, Biorefineries.multi product processes, Springer (2007).
  65. Lynd LR, Wang MQ, J. Ind. Ecol., 7, 17, 2003
  66. Fernando S, Adhikari S, Chandrapal C, Murali N, Energy Fuels, 20(4), 1727, 2006
  67. Hotel HD, Herndon V, Beck D, Boyack K, Berman M, Sandia National Laboratories (SAND98-0643) (1997).
  68. Bright RM, Strømman AH, J. Ind. Ecol., 13(4), 514, 2009
  69. Bright RM, Strømman AH, Hawkins TR, J. Ind. Ecol., 14(3), 422, 2010
  70. Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E, Biofuel. Bioprod. Bior., 3(5), 534, 2009
  71. Rosenthal RE, GAMS - A User’s Guide, Gams Development Corp. (2006).
  72. Gonzalez R, Daystar J, Jett M, Treasure T, Jameel H, Venditti R, Phillips R, Fuel Process. Technol., 94(1), 113, 2012
  73. Jones SB, Zhu Y, Valkenburg C, Richland, WA: Pacific Northwest National Laboratory (PNNL-18482) (2009).