Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1591-1599, 2017
Recent advancements in bioreactions of cellular and cell-free systems: A study of bacterial cellulose as a model
Conventional approaches of regulating natural biochemical and biological processes are greatly hampered by the complexity of natural systems. Therefore, current biotechnological research is focused on improving biological systems and processes using advanced technologies such as genetic and metabolic engineering. These technologies, which employ principles of synthetic and systems biology, are greatly motivated by the diversity of living organisms to improve biological processes and allow the manipulation and reprogramming of target bioreactions and cellular systems.This review describes recent developments in cell biology, as well as genetic and metabolic engineering, and their role in enhancing biological processes. In particular, we illustrate recent advancements in genetic and metabolic engineering with respect to the production of bacterial cellulose (BC) using the model systems Gluconacetobacter xylinum and Gluconacetobacter hansenii. Besides, the cell-free enzyme system, representing the latest engineering strategies, has been comprehensively described. The content covered in the current review will lead readers to get an insight into developing novel metabolic pathways and engineering novel strains for enhanced production of BC and other bioproducts formation.
[References]
  1. Hodgman CE, Jewett MC, Metab. Eng., 14, 261, 2012
  2. Kwok R, Nature, 463, 229, 2010
  3. Smolke CD, Silver PA, Cell, 144, 855, 2011
  4. Khalil AS, Collins JJ, Nat. Rev. Genet., 11, 367, 2010
  5. Purnick PEM, Weiss R, Nat. Rev. Mol. Cell Biol., 10, 410, 2009
  6. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Garcia NA, Glass JI, Covert MW, Cell, 150, 389, 2012
  7. Gorba C, Miyashita O, Tama F, Biophys. J., 94, 1589, 2008
  8. Bu Z, Callaway DJ, Adv. Protein Chem. Str., Biol., 83, 163, 2011
  9. Yim H, Haselbeck R, Niu W, Baxley CP, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhut RE, Stephen R, Estadilla J, Teisam S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S, Nat. Chem. Biol., 7, 445, 2011
  10. Atsumi S, Hanai T, Liao JC, Nature, 451, 86, 2008
  11. Seo C, Lee HW, Suresh A, Yang JW, Jung JK, Kim YC, Korean J. Chem. Eng., 31(8), 1433, 2014
  12. Shah N, Ul-Islam M, Khattak WA, Park JK, Carbohydr. Polym., 98, 1585, 2013
  13. Ul-Islam M, Shah N, Ha JH, Park JK, Korean J. Chem. Eng., 28(8), 1736, 2011
  14. Ullah MW, Ul-Islam M, Khan S, Kim Ya, Park JK, Carbohydr. Polym., 132, 286, 2015
  15. Ullah MW, Ul-Islam M, Khan S, Kim Ya, Park JK, Carbohydr. Polym., 136, 908, 2016
  16. Islam MU, Khan T, Park JK, Carbohydr. Polym., 88, 596, 2012
  17. Czaja W, Krystynowicz A, Bielecki S, Brown RM, Biomaterials, 27, 145, 2006
  18. Klemm D, Schumann D, Udhardt U, Marsch S, Prog. Polym. Sci, 26, 1561, 2001
  19. Islam MU, Khattak WA, Kang M, Kim SM, Khan T, Park JK, Cellulose, 20, 253, 2013
  20. Islam MU, Khattak WA, Ullah MW, Khan S, Park JK, Cellulose, 21, 433, 2014
  21. Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JF, Emerick AW, Bruner R, Benbassat A, Tal R, Proc. Natl. Acad. Sci. U.S.A., 87, 8130, 1990
  22. Saxena IM, Kudlicka K, Okuda K, Brown RM, J. Bacteriol., 176, 5735, 1994
  23. Kawano S, Tajima K, Uemori Y, Yamashita H, Erata T, Munekata M, Takai M, DNA Res., 9, 149, 2002
  24. Masaoka S, Ohe T, Sakota N, J. Ferment. Bioeng., 75(4), 18, 1993
  25. Dewulf P, Joris K, Vandamme EJ, J. Chem. Technol. Biotechnol., 67(4), 376, 1996
  26. Colvin JR, Arch. Biochem. Biophys., 70, 294, 1957
  27. Ullah MW, Khattak WA, Islam MU, Khan S, Park JK, Biochem. Eng. J., 105, 391, 2016
  28. Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H, Cohen A, Sapir S, Ohana P, Benziman M, J. Bacteriol., 180, 4416, 1998
  29. Dewulf P, Joris K, Vandamme EJ, J. Chem. Technol. Biotechnol., 67(4), 376, 1996
  30. Endler A, Rodriguez CS, Persson S, Nat. Chem. Biol., 6, 883, 2010
  31. Lin FC, Brown RM, Drake RR, Haley BE, J. Biol. Chem., 265, 4782, 1990
  32. Morgan JLW, McNamara JT, Zimmer J, Nat. Struct. Mol. Biol., 21, 489, 2014
  33. Ross P, Weinhouse H, Aloni Y, Michaeli D, Ohana PW, Mayer R, Braun S, de Vroom E, van der Marel G, van Boom JG, Benziman M, Nature, 325, 279, 1987
  34. Shoda M, Sugano Y, Biotechnol. Bioproc. E., 10, 1, 2005
  35. Standal R, Inversen TG, Coucheron DH, Fjærvik E, Blatny J, Valla S, J. Bacteriol., 176, 665, 1994
  36. Nakai T, Moriya A, Tonouchi N, Tsuchida T, Yoshinaga F, Horinouchi S, Sone Y, Mori H, Sakai F, Hayashi T, Gene, 213, 93, 1998
  37. Nakai T, Nishiyama Y, Kuga S, Sugano Y, Shoda M, Biochem. Biophys. Res. Commun., 295(2), 458, 2002
  38. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U, Mol. Microbiol., 39, 1452, 2001
  39. Romling U, Res. Microbiol., 153, 205, 2002
  40. Forster AC, Church GM, Genome Res., 17, 1, 2007
  41. Son C, Song W, Hwang DS, Hong YK, Joo J, Choi YS, Korean J. Chem. Eng., 33(8), 2406, 2016
  42. Sun I, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q, Chem. Soc. Rev., 44, 3760, 2015
  43. Sawant SS, Salunke BK, Tran TK, Kim BS, Korean J. Chem. Eng., 33(5), 1505, 2016
  44. Saibuatong OA, Phisalaphong M, Carbohydr. Polym., 79, 455, 2010
  45. Islam MU, Khan T, Park JK, Carbohydr. Polym., 89, 1189, 2012
  46. Li HX, Kim SJ, Lee YW, Kee CD, Oh IK, Korean J. Chem. Eng., 28(12), 2306, 2011
  47. Cienchanska D, Fib. Text. East. Europe, 12, 69, 2004
  48. Evans BR, O‘Neill HM, Malyvanh VP, Lee I, Woodward J, Biosens. Bioelectron., 18, 917, 2003
  49. Mahmoudi K, Hosni K, Hamdi N, Srasra E, Korean J. Chem. Eng., 32(2), 274, 2015
  50. Finkenstadt VL, Appl. Microbiol. Biotechnol., 67(6), 735, 2005
  51. Kim J, Seo YB, Smart Mater. Struct., 11, 355, 2002
  52. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Yu B, Park JK, Korean J. Chem. Eng., 32(4), 694, 2015
  53. Kojima Y, Seto A, Tonouchi N, Tsuchida T, Yoshinaga F, Biosci. Biotechnol. Biochem., 61, 1585, 1997
  54. Lu H, Jia Q, Chen L, Zhang L, J. Microbiol. Biotechnol., 5, 1, 2016
  55. Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H, Carbohydr. Polym., 120, 115, 2015
  56. Kurosumi A, Sasaki C, Yamashita Y, Nakmura Y, Carbohydr. Polym., 76, 333, 2009
  57. Brown AJ, Chem. Soc. Rev., 49, 432, 1988
  58. Ha JH, Shah N, Ul-Islam M, Khan T, Park JK, Process Biochem., 46(9), 1717, 2011
  59. Saied EH, Basta AH, Gobran RH, Polym. -Plast. Technol. Eng., 43, 797, 2004
  60. Umeda Y, Hirano A, Ishibashi M, Akiyama H, Onizuka T, Ikeuchi M, Inoue Y, DNA Res., 6, 109, 1999
  61. Jung JY, Khan T, Park JK, Chang HN, Korean J. Chem. Eng., 24(2), 265, 2007
  62. Khan T, Park JK, Carbohydr. Polym., 73, 438, 2008
  63. Park JK, Park YH, Jung JY, Biotechnol. Bioproc. E., 8, 83, 2003
  64. Park JK, Park YH, Jung JY, Biotechnol. Bioproc. E., 9, 383, 2004
  65. Sutherland IW, Int. Dairy J., 11, 663, 2001
  66. Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D, Mineyuki Y, J. Bacteriol., 195, 958, 2013
  67. Tonouchi N, Tahara N, Tsuchida T, Yoshinaga F, Beppu T, Horinouchi S, Biosci. Biotechnol. Biochem., 59, 805, 1995
  68. Kawano S, Tajima K, Kono H, Erata T, Munekata M, Taka M, J. Biosci. Bioeng., 94(3), 275, 2002
  69. Koo HM, Song SH, Pyun YP, Kim YS, Biosci. Biotechnol. Biochem., 62, 2257, 1998
  70. Cavka A, Guo X, Tang SJ, Winestrand S, Jonsson LJ, Hong F, Biotechnol. Biofuel., 6, 1, 2013
  71. Feng Y, Zhang X, Shen Y, Yoshino K, Feng W, Carbohydr. Polym., 87, 644, 2012
  72. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Ganan P, Carbohydr. Polym., 84, 96, 2011
  73. Moosavi-Nasab M, Yousefi A, Iran. J. Biotechnol., 9, 94, 2011
  74. Hungund BS, Gupta S, J. Microbio. Biochem. Technol., 5, 127, 2010
  75. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ, J. Appl. Microbiol., 107(2), 576, 2009
  76. Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK, Korean J. Chem. Eng., 25(4), 812, 2008
  77. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA, Curr. Microbiol., 57(5), 449, 2008
  78. Keshk SM, Bioproces. Biotechnique., 4, 2, 2014
  79. Cheng KC, Catchmark JM, Demirci A, Biomacromolecules, 12(3), 730, 2011
  80. Cheng KC, Catchmark JM, Demirci A, Cellulose, 16, 1033, 2009
  81. Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW, Appl. Biochem. Biotechnol., 131, 705, 2006
  82. Bae S, Shoda M, Biotechnol. Prog., 20(5), 1366, 2004
  83. Park JK, Park YH, Jung JY, Biotechnol. Bioproc. E., 8, 83, 2003
  84. Brown RM, Willison JHM, Richardson CL, Proc. Nat. Acad. Sci., U.S.A., 73, 4565, 1976
  85. Haigler CH, In: Zeronian SH, Nevell R, Ellis Horwood:Chichester, England 30 (1985).
  86. Ross P, Mayer R, Benziman M, Micobiol. Mol. Biol. Rev., 55, 35, 1991
  87. Deng Y, Nagachar N, Fang L, Luan X, Catchmark JM, Tien M, Kao TH, PLOS ONE (2015), DOI:10.1371/journal.pone.0119504.
  88. Williams WS, Cannon RE, Appl. Environ. Microbiol., 55, 2448, 1989
  89. Tahara N, Yano H, Yoshinaga F, J. Ferment. Bioeng., 83(4), 389, 1997
  90. Yu X, Atalla RH, Int. J. Biol. Macromol., 19, 145, 1996
  91. Strap LJ, Latos A, Shim I, Bonetta DT, PLoS ONE, 6, e28015 (2011).
  92. Dewulf P, Joris K, Vandamme EJ, J. Chem. Technol. Biotechnol., 67(4), 376, 1996
  93. Ishida T, Sugano Y, Nakai T, Shoda M, Biosci. Biotechnol. Biochem., 66, 1677, 2002