Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1238-1249, 2017
Comparison of catalytic pyrolysis and gasification of Indonesian low rank coals using lab-scale bubble fluidized-bed reactor
Various methods are used in the coal gasification technology for increasing the efficiency of low rank coal to the level of high rank coal through catalytic gasification. The catalyst used in the catalytic gasification process lowers the activation energy required in the coal gasification reaction. Our purpose was to determine the characteristics of the reaction conditions for producing syngas and the characteristics for comparison catalytic pyrolysis and gasification performance. Among various coals, we used Indonesian low rank coals (Indonesian lignite, MSJ, and Roto South) characterized by a large deposit volume and low cost. Catalytic pyrolysis and gasification experiments were run under the same experimental conditions (reactor type, reaction temperature, catalyst content, and catalyst input method), and the characteristics were compared. Taking the conversion and heating values into consideration, the optimal conditions for catalytic gasification in this study were an H2O/C mole ratio of 10, temperature of 800 °C, and 10 wt% catalyst impregnation.
[References]
  1. International Energy Agency, Energy Technology Perspectives (2014).
  2. World Energy Resources: Coal World Energy Council (2013).
  3. Takarada T, Tamai Y, Tomita A, Fuel, 64, 1438, 1985
  4. Huhn F, Klein J, Juntgen H, Fuel, 62(2), 196, 1983
  5. Nahas NC, Fuel, 62, 239, 1983
  6. Wigmans T, Elfring R, Moulijn JA, Carbon, 21(1), 1, 1983
  7. McKee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62(2), 217, 1983
  8. Huttinger KJ, Minges R, Fuel, 64(4), 486, 1985
  9. Lang RJ, Fuel, 65(10), 1324, 1986
  10. Takarada T, Ichinose S, Kato K, Fuel, 71(8), 883, 1992
  11. Kubiak H, Schroter HJ, Sulimma A, van Heek KH, Fuel, 62(2), 242, 1983
  12. Kuhn L, Plogmann H, Fuel, 62(2), 205, 1983
  13. Juntgen H, Fuel, 62, 234, 1983
  14. Hashimoto K, Miura K, Ueda T, Fuel, 65(11), 1516, 1986
  15. Yuh SJ, Wolf EE, Fuel, 62(6), 738, 1983
  16. Bruno G, Buroni M, Carvani L, Del Piero G, Passoni G, Fuel, 67(1), 67, 1988
  17. Tomita A, Watanabe Y, Takarada T, Ohtsuka Y, Tamai Y, Fuel, 64(6), 795, 1985
  18. Bakkerud PK, Catal. Today, 106(1-4), 30, 2005
  19. Handayani I, Triantoro A, Diniysti D, J. Novel Carbon Res. Sci., 7, 68, 2013
  20. Hippo EJ, Tandon D, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216, 1996
  21. Zhang H, Dissertation at the Brigham Young University (2001).
  22. Park ST, Choi YT, Sohn JM, Appl. Chem. Eng., 22(3), 312, 2011
  23. Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372, 2011
  24. McKee DW, Carbon, 20(1), 59, 1982
  25. Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208, 1985
  26. Wang J, Sakanishi K, Saito I, Takarada T, Morishita K, Energy Fuels, 19(5), 2114, 2005
  27. Dong L, Xu GW, Suda T, Murakami T, Fuel Process. Technol., 91(8), 882, 2010
  28. Scala F, Woodhead publishing (2013).
  29. Lee WJ, Kim SD, Fuel, 74(9), 1387, 1995
  30. Wang J, Jiang MQ, Yao YH, Zhang YM, Cao JQ, Fuel, 88(9), 1572, 2009
  31. Kural OC (Ed.), Istanbul Technical University, Istanbul (1994).
  32. Tristantini D, Supramono D, Suwignjo RK, Int. J. Technol., 6, 22, 2015
  33. Kumar A, Jones DD, Hanna MA, Energies, 2(3), 556, 2009
  34. Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640, 2001
  35. Lee JM, Kim YJ, Kim SD, Appl. Therm. Eng., 18(11), 1013, 1998
  36. Chen L, Nolan R, Avadhany S, MIT (2009).
  37. Li S, Ji XZ, Zhang XS, Gao L, Jin HG, Appl. Energy, 136, 98, 2014
  38. Wu YQ, Wang JJ, Wu SY, Huang S, Gao JS, Fuel Process. Technol., 92(3), 523, 2011
  39. Ahmed I, Gupta AK, Appl. Energy, 86(9), 1813, 2009
  40. Luo SY, Zhou YM, Yi CJ, Energy, 44(1), 391, 2012
  41. Garcia L, Salvador ML, Arauzo J, Bilbao R, Energy Fuels, 13(4), 851, 1999
  42. Lee JG, Kim JH, Park TJ, Kim SD, Fuel, 75(9), 1035, 1996