Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1208-1213, 2017
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3-4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices.
[References]
  1. Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32(3), 424, 2015
  2. Peng H, Jiang L, Huang J, Li G, J. Nanopart. Res., 9, 1163, 2007
  3. Truong NTN, Nguyen TPN, Park C, Inter. J. Photoenergy, ID 146582, 2013, 2013
  4. Burton L, Wash A, J. Phys. Chem. C, 116, 24262, 2012
  5. Reddy KTR, Reddy NK, Miles RW, Sol. Energy Mater. Sol. Cells, 90(18-19), 3041, 2006
  6. Sugiyama M, Murata Y, Shimizu T, Ramya K, Venkataiah C, Sato T, Reddy KTR, Jpn. J. Appl. Phys., 50, 05FH03, 2011
  7. Yue GH, Peng DL, Yan PX, Wang LS, Wang W, Luo XH, J. Alloy. Compd., 468, 254, 2009
  8. Reddy KTR, Reddy P, Datta PK, Miles RW, Thin Solid Films, 403, 116, 2002
  9. Reddy NK, Hahn YB, Devika YB, Sumana HR, Gunasekhar KR, J. Appl. Phys., 101, 093522, 2007
  10. Pramanik P, Basu PK, Biswas S, Thin Solid Films, 150, 269, 1987
  11. An CH, Tang KB, Liu XM, Li FQ, Zhou G, Qian YT, J. Cryst. Growth, 252(4), 575, 2003
  12. Hong SY, Popovitz-Biro R, Prior Y, Tenne R, J. Am. Chem. Soc., 125(34), 10470, 2003
  13. Liu J, Xue DF, Electrochim. Acta, 56(1), 243, 2010
  14. Thangaraju B, Kaliannan P, J. Phys. D-Appl. Phys., 33, 1054, 2000
  15. Ortiz A, Alonso JC, Garcia M, Toriz J, Semicond. Sci. Technol., 11, 243, 1996
  16. Price LS, Parkin UP, Hardy AME, Clark RJH, Hibbert TG, Molloy KC, Chem. Mater., 11, 1792, 1999
  17. Oda Y, Shen H, Zhao L, Li J, Iwamoto M, Lin H, Sci. Technol. Adv. Mater., 15, 035006, 2014
  18. Sohila S, Rajalakshmi M, Chosh C, Arora AK, Muthamizhchelvan C, J. Alloy. Compd., 509, 5843, 2011
  19. Sohila S, Rajalakshmi M, Muthamizhchelvan C, Kalavathi S, Ghosh C, Divakar R, Venkiteswaran CN, Muralidharan NG, Arora AK, Mohandas E, Mater. Lett., 65, 1148, 2011
  20. Zeferino RS, Pal U, Melendrez R, Flores MB, Adv. Nano Res., 1, 193, 2013
  21. Brus LE, J. Chem. Phys., 80, 4403, 1984
  22. Alivisatos AP, J. Phys. Chem., 100(31), 13226, 1996
  23. Varshni YP, Physica., 34, 149, 1967
  24. Luo S, Fan J, Liu W, Zhang M, Song Z, Lin C, Wu X, Chu PK, Nanotechnology, 17, 1695, 2006
  25. Price LS, Parkin IP, Field MN, Hardy AME, Clark RJH, Hibbert TG, Molloy KC, J. Mater. Chem., 10, 527, 2000
  26. Zhao Y, Zhang Z, Dang H, Liu W, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113, 175, 2004
  27. Baranovskii SD, Wiemer M, Nenashev AV, Jansson F, Gebhard F, J. Phys. Chem. Lett., 3, 1214, 2012
  28. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789, 1995
  29. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Olesiak JK, J. Phys. Chem., 114, 12784, 2010
  30. Shaw PE, Ruseckas A, Samuel IDW, Adv. Mater., 20(18), 3516, 2008