Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1187-1191, 2017
Effects of annealing temperature on Cu2ZnSnS4 (CZTS) films formed by electrospray technique
Cu2ZnSnS4 (CZTS) films were formed by an electrospray method, and the effects of annealing temperature on the properties of CZTS films were investigated. All CZTS films exhibited a kesterite structure with a preferred orientation of (112), (220) and (312), and did not show non-CZTS phases according to the annealing temperature. The grain size of CZTS films increased substantially in the temperature range of 300-450 °C, and the optical band-gap (Eg) of the films with increasing temperature decreased from 1.71 eV to 1.42 eV. Consequently, single-phased CZTS films were acquired without annealing process by electrospray method, and the annealing process improved the optical and structural properties of CZTS films. These results demonstrated that the CZTS films developed in this study has promising potential for the formation of high quality CZTS thin films in thin-film solar cells.
[References]
  1. Wang Y, Huang Y, Lee AYS, Wang CF, Gong H, J. Alloy. Compd., 539, 237, 2012
  2. Kim HT, Kim D, Park C, Mol. Cryst. Liq. Cryst., 546, 155, 2012
  3. Thiruvenkadam S, Jovina D, Rajesh AL, Sol. Energy, 106, 166, 2014
  4. Mkawi EM, Ibrahim K, Ali MKM, Mohamed AS, Int. J. Electrochem. Sci., 8, 359, 2013
  5. Kheraj V, Patel KK, Patel SJ, Shah DV, J. Cryst. Growth, 362, 174, 2013
  6. Pawar SM, Pawar BS, Moholkar AV, Choi DS, Yun JH, Moon JH, Kolekar SS, Kim JH, Electrochim. Acta, 55(12), 4057, 2010
  7. King RR, Boca A, Hong W, Liu XQ, Bhusari D, Larrabee D, Edmondson KM, Law DC, Fetzer CM, Mesropian S, Karam NH, European Photovoltaic Sol. Energy Conference and Exhibition, 24, 21, 2009
  8. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S, Appl. Phys. Lett., 97, 143508, 2010
  9. Platzer-Bjorkman C, Scragg J, Flammersberger H, Kubart T, Edoff M, Sol. Energy Mater. Sol. Cells, 98, 110, 2012
  10. Kamoun N, Bouzouita H, Rezig B, Thin Solid Films, 515(15), 5949, 2007
  11. Tanaka K, Moritake N, Oonuki M, Uchiki H, Jpn. J. Appl. Phys., 47, 598, 2008
  12. Guo BL, Chen YH, Liu XJ, Liu WC, Li AD, AIP Advances, 4, 097115, 2014
  13. Woo K, Kim Y, Moon J, Energy Environ. Sci., 5, 5340, 2012
  14. Jiang ML, Lan F, Yan XZ, Li GY, Phys. Status Solidi RRL, 8, 3, 2014
  15. Wang HX, International J. Photoenergy, 10, 801292, 2011
  16. Kim K, Kim I, Oh Y, Lee D, Woo K, Jeong S, Moon J, The Royal Soc. Chem., 16, 4323, 2014
  17. Song D, Kim W, Mahmood K, Kang HW, Park SB, Park S, Han J, J. Alloy. Compd., 567, 89, 2013
  18. Jaworek A, J. Mater. Sci., 42(1), 266, 2007
  19. Berkel GJV, McLuckey SA, Glish GL, Anal. Chem., 64, 1586, 1992
  20. Gaskell SJ, J. Mass Spectrom., 32, 677, 1997
  21. Shinde NM, Deokate RJ, Lokhande CD, J. Anal. Appl. Pyrolysis, 100, 12, 2013
  22. Emrani A, Vasekar P, Westgate CR, Sol. Energy, 98, 335, 2013
  23. Huang S, Luo WJ, Zou ZG, J. Phys. D-Appl. Phys., 46, 235108, 2013
  24. Fernandes PA, Salome PMP, da Cunha AF, J. Alloy. Compd., 509, 7600, 2011
  25. Yoo HS, Kim JH, Zhang LX, Curr. Appl. Phys., 12, 1052, 2011
  26. Khare A, Wliis A, Ammerman LM, Norris DJ, Aydil ES, Chem. Compd., 47, 11721, 2011
  27. Kim CD, Kim HT, Min BK, Park C, Mol. Cryst. Liq. Cryst., 602, 151, 2010