Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1027-1036, 2017
Production of high purity biodiesel through direct saponification of wet biomass of Chlorella protothecoides in a low cost microwave reactor: Kinetic and thermodynamic studies
We studied production of biodiesel from microalga Chlorella protothecoides (SAG 211-10 C) through direct saponification of its wet biomass (70% moisture) in a microwave reactor using ethanolic potassium hydroxide. The resulting soap was precipitated by “common ion effect” using saturated solution of potassium chloride and subjected to simultaneous acidulation and esterification to form biodiesel. The optimum parameters for saponification were: Temperaure-60 °C, Ethanol to dry biomass ratio (ml/g)-80 : 1, concentration of KOH-0.5%, microwave power-450W; and for esterification they were Temperature-60 °C, wt% of sulfuric acid-2.5%, molar ratio of methanol to fatty acids-70 : 1, microwave power-450W. The kinetics and thermodynamics of saponification and esterification were investigated. Both reactions were found to follow pseudo-first-order kinetics. Activation energies were determined as 14.177 kJ/mol and 17.234 kJ/mol for saponification and esterification, respectively. The final biodiesel yield and purity were 98.74% and 94.83%, respectively.
[References]
  1. Huang R, Cheng J, Qiu Y, Li T, Zhou JH, Cen KF, Energy Conv. Manag., 105, 791, 2015
  2. Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14, 217, 2010
  3. Dong T, Wang J, Miao C, Zheng YB, Chen SL, Bioresour. Technol., 136, 8, 2013
  4. Haas MJ, Wagner K, Eur. J. Lipid Sci. Technol., 113, 1219, 2011
  5. Macias-Sanchez MD, Robles-Medina A, Hita-Pena E, Jimenez-Callejon MJ, Esteban-Cerdan L, Gonzalez-Moreno PA, Molina-Grima E, Fuel, 150, 14, 2015
  6. Im H, Lee H, Park MS, Yang JW, Lee JW, Bioresour. Technol., 152, 534, 2014
  7. Cao H, Zhang Z, Wu X, Miao X, Biomed. Res. Int., 2013, 1, 2013
  8. Patil PD, Gude VG, Mannarswamy A, Deng SG, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N, Bioresour. Technol., 102(1), 118, 2011
  9. Ali M, Watson IA, Renew. Energy, 76, 470, 2015
  10. Grima EM, Medina AR, Gimenez AG, Perez JS, Camacho FG, Sanchez JG, J. Am. Oil Chem. Soc., 71, 955, 1994
  11. Gonzalez MI, Medina AR, Grima EM, Gimenez AG, Carstens M, Cerdan LE, J. Am. Oil Chem. Soc., 75, 1735, 1998
  12. Pena EH, Medina AR, Callejon MJJ, Sanchez MDM, Cerdan LE, Moreno PAG, Grima EM, Renew. Energy, 75, 366, 2015
  13. Veillette M, Giroir-Fendler A, Faucheux N, Heitz M, Appl. Microbiol. Biotechnol., 99(1), 109, 2015
  14. Scott AT, US Patent 2,300,750 (1942).
  15. Bligh EG, Dyer WJ, Can. J. Chem. Eng., 37, 911, 1959
  16. Vicente G, Coteron A, Martinez M, Aracil J, Ind. Crop. Prod., 8, 29, 1998
  17. Lidstrom P, Tierney J, Wathey B, Westman J, Tetrahedron, 57, 9225, 2001
  18. Fajardo AR, Cerdan LE, Medina AR, Fernandez FGA, Moreno PAG, Grima EM, Eur. J. Lip. Sci. Technol., 109, 120, 2007
  19. Halim R, Danquah MK, Webley PA, Biotechnol. Adv., 30, 709, 2012
  20. Wahidin S, Idris A, Shaleh SRM, Energy Conv. Manag., 84, 227, 2014
  21. Patil PD, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng SG, Bioresour. Technol., 102(2), 1399, 2011
  22. Lokman IM, Rashid U, Zainal Z, Yunus R, Taufiq-Yap YH, J. Oleo Sci., 63, 849, 2014
  23. Patil PD, Gude VG, Mannarswamy A, Cooke P, Nirmalakhandan N, Lammers P, Deng SG, Fuel, 97, 822, 2012
  24. Martinez-Guerra E, Gude VG, Mondala A, Holmes W, Hernandez R, Bioresour. Technol., 156, 240, 2014
  25. Kostic MD, Velicovic AV, Jokovic NM, Stamenkovic OS, Veljkovi VB, Waste Manage., 48, 619, 2016
  26. Rathore V, Tyagi S, Newalkar B, Badoni RP, Fuel, 140, 597, 2015
  27. Evans MG, Polanyi M, J. Chem. Soc.-Faraday Trans., 31, 875, 1935
  28. Ong LK, Kurniawan A, Suwandi AC, Lin CX, Zhao XS, Ismadji S, J. Supercrit. Fluids, 75, 11, 2013
  29. Nautiyal P, Subramanian KA, Dastidar MG, Fuel, 135, 228, 2014
  30. Ahmad A, Yasin NM, Derek C, Lim J, Environ. Technol., 35, 891, 2014
  31. Knothe G, Fuel Process. Technol., 88, 669, 2007