Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 1013-1020, 2017
Optimization of biodiesel production process in a continuous microchannel using response surface methodology
We assessed the biodiesel production process in a continuous microchannel through preparation of a heterogeneous catalyst (CaO/MgO) from demineralized water plant sediment. This mixed oxide catalyst was used for transesterification of rapeseed oil as feedstock by methanol to produce biodiesel fuel at various conditions. A microchannel, utilized as a novel reactor, was applied to convert rapeseed oil into biodiesel in multiple steps. The effects of the process variables, such as catalyst concentration, methanol to oil volume ratio, n-hexane to oil volume ratio, and reaction temperature on the purity of biodiesel, were carefully investigated. Box-Behnken experimental design was employed to obtain the maximum purity of biodiesel response surface methodology. The optimum condition for the production of biodiesel was the following: catalyst concentration of 7.875 wt%, methanol to oil volume ratio of 1.75 : 3, n-hexane to oil volume ratio of 0.575 : 1, and reaction temperature of 70 °C.
[References]
  1. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G, Energy Conv. Manag., 63, 138, 2012
  2. Leung DYC, Wu X, Leung MKH, Appl. Energy, 87(4), 1083, 2010
  3. Van Gerpen J, Fuel Process. Technol., 86(10), 1097, 2005
  4. Mendow G, Querini CA, Chem. Eng. J., 228, 93, 2013
  5. Kang H, Song H, Ha J, Na BK, Korean J. Chem. Eng., 33(7), 2084, 2016
  6. Meher LC, Vidya SD, Naik, Renew. Sust. Energ. Rev., 10, 248, 2006
  7. Huang M, Luo J, Fang Z, Li H, Appl. Catal. B: Environ., 190, 103, 2016
  8. Stojkovic IJ, Stamenkovic OS, Povrenovic DS, Veljkovic VB, Renew. Sust. Energ. Rev., 32, 1, 2014
  9. Shi W, Li H, Zhou R, Zhang H, Du Q, Bioresour. Technol., 210, 43, 2016
  10. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK, Renew. Sust. Energ. Rev., 61, 245, 2016
  11. Bonet-Ragel K, Canet A, Benaiges MD, Valero F, Fuel, 161, 12, 2015
  12. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef SA, Renew. Sust. Energ. Rev., 16, 2070, 2012
  13. Kouzu M, Hidaka J, Fuel, 93(1), 1, 2012
  14. Borges ME, Diaz L, Renew. Sust. Energ. Rev., 16, 2839, 2012
  15. Zabeti M, Daud WMAW, Aroua MK, Fuel Process. Technol., 90(6), 770, 2009
  16. Moradi GR, Hojabri Z, Mohadesi M, React. Kinet. Mech. Cat., 113, 169, 2014
  17. Cuba-Torres CM, Marin-Flores O, Owen CD, Wang ZH, Garcia-Perez M, Norton MG, Ha S, Fuel, 146, 132, 2015
  18. Lee HV, Juan JC, Taufiq-Yap YH, Renew. Energy, 74, 124, 2015
  19. Marinkovic DM, Stankovic MV, Velicovic AV, Avramovic JM, Miladinovic MR, Stamenkovic OO, Veljkovic VB, Jovanovic DM, Renew. Sust. Energ. Rev., 56, 1387, 2016
  20. Nakatani N, Takamori H, Takeda K, Sakugawa H, Bioresour. Technol., 100(3), 1510, 2009
  21. Granados ML, Poves MDZ, Alonso DM, Mariscal R, Galisteo FC, Moreno-Tost R, Santamaria J, Fierro JLG, Appl. Catal. B: Environ., 73(3-4), 317, 2007
  22. Kim D, Seol SK, Chang WS, Korean J. Chem. Eng., 33(2), 527, 2016
  23. Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, Pratap AP, Ultrason. Sonochem., 22, 278, 2015
  24. Santacesaria E, Di Serio M, Tesser R, Turco R, Tortorelli M, Russo V, Chem. Eng. Process., 52, 47, 2012
  25. Aghel B, Rahimi M, Sepahvand A, Alitabar M, Ghasempour HR, Energy Conv. Manag., 84, 541, 2014
  26. Santana HS, Tortola DS, Silva JL, Taranto OP, Energy Conv. Manag., DOI:10.1016/j.enconman.2016.03.089., 2016
  27. Alenezi R, Santos RCD, Raymahasay S, Leeke GA, Renew. Energy, 53, 242, 2013
  28. Shin HY, Lim SM, Kang SC, Bae SY, Fuel Process. Technol., 98, 1, 2012
  29. Han X, Yan W, Hung CT, He Y, Wu PH, Liu LL, Huang SJ, Liu SB, Korean J. Chem. Eng., 33(7), 2063, 2016
  30. Bynes AN, Eide I, Jorgensen KB, Fuel, 137, 94, 2014
  31. Sendzikiene E, Sinkuniene D, Kazanceva I, Kazancev K, Renew. Energy, 87, 266, 2016
  32. Mostafaei M, Ghobadian B, Barzegar M, Banakar A, Ultrason. Sonochem., 27, 54, 2015
  33. Roschat W, Siritanon T, Kaewpuang T, Yoosuk B, Promarak V, Bioresour. Technol., 209, 343, 2016
  34. Encinar JM, Pardal A, Sanchez N, Fuel, 166, 51, 2016
  35. Khang DS, Razon LF, Madrazo CF, Tan RR, Chem. Eng. Res. Des., 92(8), 1512, 2014
  36. Ngamcharussrivichai C, Wiwatnimit W, Wangnoi S, J. Mol. Catal. A-Chem., 276(1-2), 24, 2007
  37. Wang Y, Ou SY, Liu PZ, Xue F, Tang SZ, J. Mol. Catal. A-Chem., 252(1-2), 107, 2006
  38. Somnuk K, Niseng S, Prateepchaikul G, Energy Conv. Manag., 80, 374, 2014
  39. Patil PD, Deng SG, Fuel, 88(7), 1302, 2009
  40. Rashid U, Anwar F, Ashraf M, Saleem M, Yusup S, Energy Conv. Manag., 52(8-9), 3034, 2011
  41. Salvi B, Panwar N, Renew. Sust. Energ. Rev., 16, 3680, 2012
  42. Kafuku G, Mbarawa M, Fuel, 89(9), 2556, 2010
  43. Noshadi I, Amin NAS, Parnas RS, Fuel, 94(1), 156, 2012
  44. Montgomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
  45. Yang ZQ, Xie WL, Fuel Process. Technol., 88(6), 631, 2007
  46. Omar WNNW, Amin NAS, Biomass Bioenerg., 35(3), 1329, 2011
  47. Haaland PD, Experimental design in biotechnology, Marcel Dekker Inc., New York (1989).
  48. Tang Z, Wang L, Yang J, Eur. J. Lipid Sci. Technol., 110, 747, 2008