Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 977-986, 2017
Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: A comparative study of two force fields
Molecular dynamic simulation was used to calculate the self-diffusion coefficients of ions in aqueous KCl solution. The simulations were performed for enough time (12 ns) in the form of all-atom to determine the accurate values of the self-diffusion coefficients. The values of the self-diffusion coefficients were calculated by Einstein equation. Two different force fields of Dang and Deublein were employed in the simulations, and we found that at low ion concentration (equal or less than 3mol/(kg of H2O)), the Dang force field is more accurate for prediction of the selfdiffusion coefficient of K+ ions and Deublein force field is more accurate for Cl- ions. An Arrhenius type equation was used to model the temperature dependence of the self-diffusion coefficients and the diffusion activation energies at different ion concentrations were reported.
[References]
  1. Ghaffari A, Rahabar-Kelishami A, J. Mol. Liq., 187, 238, 2013
  2. Parthasarathi R, Sun J, Dutta T, Sun N, Pattathil S, Konda NVSNM, Peralta AG, Simmons BA, Singh S, Biotechnol. Biofuels, 9, 1, 2016
  3. Chilavo AA, Vlcek L, Fluid Phase Equilib., 407, 84, 2015
  4. Lee HY, Manivannan V, Goodenough J, C.R. Acad. Sci., Ser. IIc: Chim., 2, 565, 1999
  5. Edelman I, Leibman J, Am. J. Med., 27, 256, 1959
  6. Shekhtar G, Rai M, Mahulkar NP, Karandikar PB, in Electronics and Communication Systems (ICECS), 2nd International Conference on, Coimbatore (2015).
  7. Kim M, Oh I, Kim J, Phys. Chem. Chem. Phys., 17, 16367, 2015
  8. Rausch MH, Hopf L, Heller A, Leipertz A, Froba AP, J. Phys. Chem. B, 117(8), 2429, 2013
  9. Sundar LS, Ramana EV, Singh MK, Sousa ACM, Int. Commun. Heat Mass Transf., 56, 86, 2014
  10. Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, Int. J. Thermophys., 34, 1, 2013
  11. Dutta BK, Principle of Mass Transfer and Separation Process, PHI Learning Pvt. Ltd., New Dehli (2009).
  12. Sherwood TK, Pigford RL, Wilke CR, Mass Transfer, McGraw-Hill (1975).
  13. Kimmich R, Unrath W, Schnur G, Rommel E, J. Magn. Reson., 91, 136, 1991
  14. Meyer A, Phys. Rev. B, 81, 1, 2010
  15. Lascombe J, Molecular Motions in Liquids: Proceedings of the 24th Annual Meeting of the Societe de Chimie Physique Paris-Orsay, 2-6 July 1972, Springer Science & Business Media (2012).
  16. Anderko A, Lencka MM, Ind. Eng. Chem. Res., 37(7), 2878, 1998
  17. Wang PM, Anderko A, Ind. Eng. Chem. Res., 42(14), 3495, 2003
  18. Chenyu Z, Shin YK, van Duin ACT, Fang H, Liu ZK, Acta Mater., 83, 102, 2015
  19. Zhang N, Shen Z, Chen C, He G, Hao C, J. Mol. Liq., 203, 90, 2015
  20. Landuzzi F, Pasquini L, Giusepponi S, Celino M, Montone A, Palla PL, Cleri F, J. Mater. Sci., 50(6), 2502, 2015
  21. Israelachvili JN, Intermolecular and Surface Forces, Elsevier Science (2015).
  22. Li Z, Borodin O, Smith GD, Bedrov D, J. Phys. Chem. B, 119(7), 3085, 2015
  23. Xu K, Ji X, Chen C, Wan HZ, Miao L, Jiang JJ, Electrochim. Acta, 166, 142, 2015
  24. Rajput NN, Qu XH, Sa N, Burrell AK, Persson KA, J. Am. Chem. Soc., 137(9), 3411, 2015
  25. Kasemagi H, Ollikainen M, Brandell D, Aabloo A, Electrochim. Acta, 175, 47, 2015
  26. Duyail M, Villard A, Nguyen TN, Dufreche JF, J. Phys. Chem. B, 119(34), 11184, 2015
  27. Meier K, Laesecke A, Kabelac S, Int. J. Thermophys., 22, 161, 2001
  28. Furtado FA, Abreu CRA, Tavares FW, AIChE J., 61(9), 2881, 2015
  29. Guevara-Carrion G, Nieto-Draghi C, Vrabec J, Hasse H, J. Phys. Chem. B, 112(51), 16664, 2008
  30. Wei-Zhong L, Cong C, Jian Y, Heat Tran. Asian Res., 37, 86, 2008
  31. Dang LX, Pettitt BM, J. Phys. Chem., 91, 3349, 1987
  32. Berendsen H, Grigera J, Straatsma T, J. Phys. Chem., 91, 6269, 1987
  33. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M, J. Chem. Phys., 79, 926, 1983
  34. Jorgensen WL, Madura JD, Mol. Phys., 56, 1381, 1985
  35. Sindt JO, Alexander AJ, Camp PJ, J. Phys. Chem. B, 118(31), 9404, 2014
  36. Deublein S, Vrabec J, Hasse H, J. Chem. Phys., 136, 1, 2012
  37. Schnabel T, Molecular Modeling and Simulation of Hydrogen Bonding Pure Fluids and Mixtures, Logos Verlag, Berlin (2008).
  38. Mark P, Nilsson L, J. Phys. Chem. A, 105(43), 9954, 2001
  39. Allen MP, Tildesley DJ, Computer Simulation of Liquids, Clarendon Press (1989).
  40. Zhou R, Molecular Modeling at the Atomic Scale: Methods and Applications in Quantitative Biology, CRC Press, NewYork (2014).
  41. Plimpton S, J. Comput. Phys., 117, 1, 1995
  42. Seminario JM, Design and Applications of Nanomaterials for Sensors, Springer Netherlands (2014).
  43. Al Ghafri S, Maitland GC, Trusler JPM, J. Chem. Eng. Data, 57(4), 1288, 2012
  44. Tabor D, Gases, Liquids and Solids: And Other States of Matter, Cambridge University Press, Cambridge (1991).
  45. Catlow R, Parker SC, Allen MP, Computer Modelling of Fluids Polymers and Solids, Springer Netherlands (2012).
  46. Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK, J. Phys. Chem. B, 111(48), 13570, 2007
  47. Chowdhuri S, Chandra A, J. Chem. Phys., 115(8), 3732, 2001
  48. Friedman AM, Kennedy JW, J. Am. Chem. Soc., 77, 4499, 1955
  49. Mills R, J. Phys. Chem., 61, 1631, 1957