Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 969-976, 2017
Computational fluid dynamics on the hydrodynamic characteristics of the conical cap tray
This paper addresses an investigation on the hydrodynamic behavior of a new type of cap trays called conical cap tray (ConCap tray). A 3-D computational fluid dynamics model was developed to predict the hydrodynamics of the ConCap tray which is operated in the spray regime. The model considers two phase flow of gas and liquid in a VOF-like code framework. The homogeneous multiple size group model (MUSIG model) and shear stress transport (SST) turbulence model were implemented. Detailed insights into the hydrodynamic behavior of the inside of the cones were obtained. The relation between velocity, pressure and cross section area of the flow inside the cone also was formulated. The computational fluid dynamic (CFD) results show that the pressure variation in the cones forces the liquid on the tray to be highly turbulent, which leads to deform the interface to break up. Effect of different riser heights was also studied by CFD simulations. The results show that the riser height has a significant role in the hydrodynamics of the tray, especially in uniform gas distribution in the tray and reducing weeping rates.
[References]
  1. Nutter E, US Patent, US005360583A (1994).
  2. Nutter DE, Chem. Eng. Res. Des., 77(6), 493, 1999
  3. Sun JS, Luo XB, Jiang S, Wang WP, Lyu H, Wang P, Gao H, Chem. Eng. Technol., 37(3), 383, 2014
  4. Zarei T, Rahimi R, Zivdar M, Korean J. Chem. Eng., 26(5), 1213, 2009
  5. Qian JB, Qi RB, Zhu SL, Chem. Eng. Res. Des., 84(A2), 155, 2006
  6. Li QS, Zhang MX, Tang XF, Li L, Lei ZG, Chem. Eng. Res. Des., 91(6), 970, 2013
  7. De Bruyn G, Gangriwala HA, Nye JO, Institution of Chemical Engineers Symposium Series 1, (128), A509-A517 (1992).
  8. Kunesh JG, Kister HZ, Lockett MJ, Fair JR, Chem. Eng. Prog., 91(10), 43, 1995
  9. Bravo JL, Kusters KA, Chem. Eng. Prog., 96(12), 33, 2000
  10. Burcher N, Wikstrom E, Mosca G, Hausman A, Wilkinson P, AIChE, 189, 2007
  11. Summers DR, Bernard A, Villiers WED, AIChE Proceedings of Topical Distillation Conference, 189 (2007).
  12. Penciak J, Nieuwoudt I, Spencer G, IChemE Symp., 152, 311, 2006
  13. Wilkinson P, Vos E, Konijn G, Kooijman H, Mosca G, Tonon L, Chem. Eng. Res. Des., 85(A1), 130, 2007
  14. Fair JR, Trutna WR, Seibert AF, Chem. Eng. Res. Des., 77(7), 619, 1999
  15. Trutna WR, US Patent, 5,695,548 (1997).
  16. Xu ZP, Bielinski DH, US Patent, 6682633B1 (2004).
  17. Xu P, Nowak B, Richardson K, AIChE Meeting, Spring (2007).
  18. Olujic Z, Jodecke M, Shilkin A, Schuch G, Kaibel B, Chem. Eng. Process., 48(6), 1089, 2009
  19. Naziri N, Zadghaffari R, Naziri H, APCBEE Procedia, 3, 182, 2012
  20. Yang N, Zhang R, Jiang B, Li Z, Zhang L, Sun Y, J. Taiwan Inst. Chem. Eng., 53, 6, 2015
  21. Li X, Cong H, Gao X, Li H, J. Taiwan Inst. Chem. Eng., 60, 44, 2016
  22. Zarei T, Rahimi R, Zarei A, Zivdar M, Chem. Eng. Process., 64, 17, 2013
  23. Gesit G, Nandakumar K, Chuang KT, AIChE J., 49(4), 910, 2003
  24. Jiang S, Gao H, Sun JS, Wang YH, Zhang LN, Chem. Eng. Process., 52, 74, 2012
  25. Krishna R, Van Baten JM, Ellenberger J, Higler AP, Taylor R, Chem. Eng. Res. Des., 77(7), 639, 1999
  26. Rahimi R, Zarei A, Zarei T, Firoozsalari HN, Zivdar M, In: 50th Distillation & Absorption Conference, 479 (2010).
  27. Ostadzehi MR, Rahimi R, Zarei T, Zivdar M, J. Chem. Peroluem Enineering, 47, 39, 2013
  28. Zarei A, Rahimi R, Zarei T, Naziri N, In: 50th Distillation & Absorption Conference, 407 (2010).
  29. Roshdi S, Kasiri N, Hashemabadi SH, Ivakpour J, Korean J. Chem. Eng., 30(3), 563, 2013
  30. Li XG, Liu DX, Xu SM, Li H, Chem. Eng. Process., 48(1), 145, 2009
  31. Zarei T, Farsiani M, Khorshidi J, Korean J. Chem. Eng., 34(1), 150, 2017
  32. Zarei A, Hosseini SH, Rahimi R, Chem. Eng. Res. Des., 91(12), 2333, 2013
  33. Zarei A, Hosseini SH, Rahimi R, J. Taiwan Inst. Chem. Eng., 44, 27, 2013
  34. Ma D, Liu MY, Zu YG, Tang C, Chem. Eng. Sci., 72, 61, 2012
  35. Hoffmann A, Ausner J, Repke JU, Wozny G, Comput. Chem. Eng., 29(6), 1433, 2005
  36. Shojaee S, Hosseini SH, Rafati A, Ahmadi G, Ind. Eng. Chem. Res., 5, 10833, 2011
  37. Alizadehdakhel A, Rahimi M, Alsairafi AA, Comput. Chem. Eng., 34(1), 1, 2010
  38. Malvin A, Chan A, Lau PL, Eng. Lett., 19(1), 24, 2011
  39. Malvin A, Chan A, Lau PL, J. Taiwan Inst. Chem. Eng., 45, 1354, 2014
  40. Hirt CW, Nichols BD, J. Comput. Phys., 39, 201, 1981
  41. Khorshidi J, Zarei T, Davari H, Int. J. Industrial Mathematics, 9, 83, 2017
  42. Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100, 335, 1992
  43. Menter FR, AIAA J., 32, 1598, 1994
  44. Menter FR, Egorov Y, IUTAM Symposium on One Hundred Years of Boundary Layer Research, Springer, Netherlands, 279 (2006).
  45. Krepper E, Beyer M, Frank T, Lucas D, Prasser HM, Nucl. Eng. Des., 239(11), 2372, 2009
  46. Prince MJ, Blanch HW, AIChE J., 36, 1485, 1990
  47. Luo H, Svendsen HF, AIChE J., 42(5), 1225, 1996
  48. Kister HZ, McGraw Hill (1992).
  49. White FM, Fluid Mechanics, McGraw Hill (2011).
  50. Fuster D, Bague A, Boeck T, Le Moyne L, Leboissetier A, Popinet S, Ray P, Scardovelli R, Zaleski S, Int. J. Multiph. Flow, 35(6), 550, 2009
  51. Lockett MJ, Cambridge University Press: Cambridge, U.K. (1986).