Issue
Korean Journal of Chemical Engineering,
Vol.34, No.4, 961-968, 2017
Simplified design of proportional-integral-derivative (PID) controller to give a time domain specification for high order processes
An efficient simplified method is proposed for the time domain design of industrial proportional-integralderivative (PID) controllers and lead-lag compensators for high order single input single output (SISO) systems. The proposed analytical method requires no trial error steps for a lead-lag compensator design in the time domain by using the root-locus method. A practical PID controller design method was obtained based on the corresponding lead-lag compensator to give a required time-domain specification. Simulation studies were carried out to illustrate the control performance of the controllers by the proposed method. The proposed PID controller and lead-lag compensator directly satisfied time domain control specifications such as damping ratio, maximum overshoot, settling time and steady sate error without trial and error steps. The suggested algorithm can easily be integrated with a toolbox in commercial software such as Matlab.
[References]
  1. Astrom KJ, Hagglund T, Control Eng. Practice, 9, 1163, 2001
  2. Thu HCT, Lee M, Korean J. Chem. Eng., 30(12), 2151, 2013
  3. Vu TNL, Lee M, Korean J. Chem. Eng., 30(3), 546, 2013
  4. Horng HY, 2013 International Symposium on Next-Generation Electronics, 579 (2013).
  5. Franklin GF, Emami-Naeini A, Powell JD, Feedbackcontrol of dynamic systems, Pearson Prentice Hall, Upper Saddle River, N.J. (2006).
  6. Wang DJ, Automatica, 45(4), 1026, 2009
  7. Zanasi R, Cuoghi S, Ntogramatzidis L, Int. J. Control, 84(11), 1830, 2011
  8. Yeung KS, Wong KW, Chen KL, IEEE Trans. Educ., 41, 76, 1998
  9. Vanavil B, Anusha AVNL, Perumalsamy M, Rao AS, Chem. Eng. Commun., 201, 1468, 2014
  10. Loh AP, Cai X, Tan WW, Automatica, 40(3), 423, 2004
  11. Tan N, Comput. Electrical Engineering, 29, 835, 2003
  12. Xu J, 27th Chinese Control Conference, 16-18 July 2008, pp. 752-757.
  13. Zanasi R, Cuoghi S, IFAC Proceedings, 45, 524, 2012
  14. Nie ZY, Wang QG, Wu M, He Y, Qin Q, Ind. Eng. Chem. Res., 50(3), 1330, 2011
  15. Messner WC, Bedillion MD, Lu X, Karns DC, IEEE Control Syst., 27, 44, 2007
  16. Ogata K, Modern control engineering, Prentice Hall, Upper Saddle River, NJ (2002).
  17. Ogata K, Modern control engineering, Prentice Hall, Englewood Cliffs, NJ (1990).
  18. Teixeira MCM, IEEE Trans. Educ., 37, 63, 1994
  19. Zhang Q, Messner WC, Proc. 2011 Am. Control Conf., 693, 2011
  20. O’Brien RT, Watkins JM, Proc. 2005 Am. Control Conf., 7, 4935, 2005
  21. Sung SW, Lee IB, Chem. Eng. Sci., 55(10), 1883, 2000
  22. Ziegler JG, Nichols NB, InTech, 42, 94, 1995
  23. Kaya I, Comput. Chem. Eng., 28(3), 281, 2004
  24. Astrom KJ, Hagglund T, Automatica, 20, 645, 1984
  25. Gyongy IJ, Clarke DW, Control Eng. Practice, 14, 149, 2006
  26. Padhy PK, Majhi S, ISA Trans., 48, 423, 2009
  27. Leva A, Eur. J. Control., 3, 150, 1997
  28. Papadopoulos KG, Margaris NI, J. Process Control, 23(6), 905, 2013
  29. Tan KK, Lee TH, Jiang X, ISA Trans., 39, 219, 2000
  30. Zhuang M, Atherton DP, Control Theory and Applications, IEE Proceedings D, 140, 216, 1993
  31. Seborg DE, Edgar TF, Mellichamp DA, Process dynamics and control, Wiley, Hoboken, NJ (2004).
  32. Lam J, Int. J. Control, 57, 377, 1993
  33. Bahill AT, IEEE Contr. Syst. Mag., 3, 16, 1983