Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 935-941, 2017
Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization
The regeneration of the CO2 capture system is the most energy-intensive process associated with CO2 capture because high temperatures are required to desorb CO2 from the absorbent. We propose a single process for effective CO2 capture and mineralization as a substitute for desorption of absorbed CO2, producing high value-added CaCO3. A saturated 2-amino-2-methyl-1-propanol (AMP) solution was used as a carbonate source, and calcium chloride (CaCl2) was used as a calcium ion source to precipitate CaCO3. A semi-batch reactor was used to investigate the effects of the mixing rate, temperature, and amount of calcium added during the CaCO3 precipitation process. During the mineralization reaction, the absorbed CO2 in AMP solution instantly converted into white CaCO3 precipitant with 97.4% conversion. The stirring rate provided a reciprocal effect on the crystal size, whereas the temperature and Ca/CO2 molar ratio appeared to affect the crystal morphology.
[References]
  1. Lucquiaud M, Gibbins J, Chem. Eng. Res. Des., 89(9A), 1553, 2011
  2. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609, 2011
  3. Lim JA, Kim DH, Yoon Y, Jeong SK, Park KT, Nam SC, Energy Fuels, 26(6), 3910, 2012
  4. Warudkar SS, Cox KR, Wong MS, Hirasaki GJ, Int. J. Greenh. Gas. Con., 16, 342, 2013
  5. Dang HY, Rochelle GT, Sep. Sci. Technol., 38(2), 337, 2003
  6. Bishnoi S, Rochelle GT, AIChE J., 48(12), 2788, 2002
  7. Bishnoi S, Rochelle GT, Ind. Eng. Chem. Res., 41(3), 604, 2002
  8. Sartori G, Ho WS, Savage DW, Chludzinski GR, Wiechert S, Sep. Purif. Methods, 16, 171, 1986
  9. Beer JM, Prog. Energy Combust. Sci., 26, 301, 2000
  10. Beer JM, Prog. Energy Combust. Sci., 33(2), 107, 2007
  11. Karimi M, Hillestad M, Svendsen HF, Energy Procedia, 4, 1601, 2011
  12. Van Wagener DH, Rochelle GT, Chem. Eng. Res. Des., 89(9A), 1639, 2011
  13. Le Moullec Y, Kanniche M, Int. J. Greenh. Gas Con., 5, 727, 2011
  14. Neveux T, Le Moullec Y, Corriou JP, Favre E, E. Chem. Eng. Trans., 35, 337, 2013
  15. Oyenekan BA, Rochelle GT, AIChE J., 53(12), 3144, 2007
  16. Leites IL, Sama DA, Lior N, Energy, 28(1), 55, 2003
  17. Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D, Ind. Eng. Chem. Res., 45(8), 2414, 2006
  18. Domingo C, Loste E, Gomez-Morales J, Garcia-Carmona J, Fraile J, J. Supercrit. Fluids, 36(3), 202, 2006
  19. Sanna A, Dri M, Hall MR, Maroto-Valer M, Appl. Energy, 99, 545, 2012
  20. Bhanage BM, Arai M, Transformation and Utilization of Carbon Dioxide, Springer Berlin Heidelberg, Berlin (2014).
  21. Popescu MA, Isopescu R, Matei C, Fagarasan G, Plesu V, Adv. Powder Technol., 25(2), 500, 2014
  22. Thriveni T, Um N, Nam SY, Ahn YJ, Han C, Ahn JW, Korean Chem. Soc., 51, 107, 2014
  23. Carmona JG, Morales JG, Clemente RR, J. Colloid Interface Sci., 261(2), 434, 2003
  24. Ukrainczyk M, Kontrec J, Babic-Ivancic V, Brecevic L, Kralj D, Powder Technol., 171(3), 192, 2007
  25. Feng B, Yong AK, An H, Mater. Sci. Eng., 445, 170, 2007
  26. Vucak M, Peric J, Pons MN, Chanel S, Powder Technol., 101(1), 1, 1999
  27. Prah J, Macek J, Drazic G, J. Cryst. Growth, 324(1), 229, 2011
  28. Vinoba M, Bhagiyalakshmi M, Grace AN, Chu DH, Nam SC, Yoon Y, Yoon SH, Jeong SK, Langmuir, 29(50), 15655, 2013
  29. Vinoba M, Bhagiyalakshmi M, Choi SY, Park KT, Kim HJ, Jeong SK, J. Phys. Chem., 118, 17556, 2014
  30. Schroeder BB, Harris DD, Smith ST, Lignell DO, Cryst. Growth Des., 14, 1756, 2014
  31. Torbacke M, Rasmuson AC, AIChE J., 50(12), 3107, 2004
  32. Beck R, Andreassen JP, AIChE J., 58(1), 107, 2012
  33. Kitamura M, Cryst. Eng. Comm., 11, 949, 2009
  34. Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, J. Supercrit. Fluids, 52(3), 298, 2010
  35. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783, 2013
  36. Shariff AM, Murshid G, Lau KK, Bustam MA, Ahmad F, World Acad Sci. Eng. Technol., 60, 1050, 2011
  37. Kitamura M, J. Cryst. Growth, 239, 2205, 2002
  38. Tai CY, Chen P, Shih S, AIChE J., 39, 1472, 1993
  39. Kawano J, Shimobayashi N, Kitamura M, Shinoda K, J. Cryst. Growth, 239, 419, 2002
  40. Schlomach J, Quarch K, Kind M, Chem. Eng. Technol., 29(2), 215, 2006
  41. Keith HD, Padden FJ, J. Appl. Phys., 34, 2409, 1963
  42. Ahn JW, Kim JH, Park HS, Kim JA, Han C, Kim H, Korean J. Chem. Eng., 22(6), 852, 2005
  43. Jung T, Kim W, Choi CK, Cryst. Res. Technol., 40, 586, 2005
  44. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 276(3-4), 541, 2005
  45. Sohnel O, Mullin JW, J. Cryst. Growth, 60, 239, 1982
  46. Onimisi JA, Ismail R, Ariffin KS, Baharun N, Hussin HB, Korean J. Chem. Eng., 33(9), 2756, 2016