Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 898-902, 2017
Quantitative analysis of carbon nanotube cross-linking reactions
Covalent cross-linking of carbon nanotubes (CNTs) is a useful way of transferring the unique properties of individual CNTs to macroscopic structures for a wide variety of applications. For elaborate engineering of the crosslinking reaction of CNTs, quantitative analysis of cross-linking reaction is imperative. We report here a universally applicable method to quantitatively analyze the cross-linking of CNTs by esterification. To distinguish the cross-linking reaction from the one-side reaction, where only one end of the linker reacts with a CNT, mass and molar balances were established based on thermogravimetric analysis data. This analysis revealed that approximately one in five linkers was involved in the cross-linking reaction. Qualitative characterizations such as Fourier transform infrared and Raman spectroscopy were also used to confirm the cross-linking reaction.
[References]
  1. Hirsch A, Angew. Chem.-Int. Edit., 41, 1853, 2002
  2. Banerjee S, Hemraj-Benny T, Wong SS, Adv. Mater., 17(1), 17, 2005
  3. Bahr JL, Tour JM, J. Mater. Chem., 12, 1952, 2002
  4. Holzinger M, Steinmetz J, Samaille D, Glerup M, Paillet M, Bernier P, Ley L, Graupner R, Carbon, 42, 941, 2004
  5. Min J, Cai JY, Sridhar M, Easton CDR, Gengenbach T, McDonnell J, Humphries W, Lucas S, Carbon, 52, 520, 2013
  6. Kim H, Lee J, Park B, Sa JH, Jung A, Kim T, Park J, Hwang W, Lee KH, Korean J. Chem. Eng., 33, 299, 2015
  7. Chen IW, Liang R, Zhao H, Wang B, Zhang C, Nanotechnology, 22, 485708, 2011
  8. Ogino SI, Sato Y, Yamamoto G, Sasamori K, Kimura H, Hashida T, Motomiya K, Jeyadevan B, Tohji K, J. Phys. Chem. B, 110(46), 23159, 2006
  9. Satti A, Perret A, McCarthy JE, Gun'ko YK, J. Mater. Chem., 20, 7941, 2010
  10. De Marco M, Markoulidis F, Menzel R, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Basahel SN, Shaffer MSP, J. Mater. Chem. A, 4, 5385, 2016
  11. Nie H, Guo W, Yuan Y, Dou Z, Shi Z, Liu Z, Wang H, Liu Y, Nano Res., 3, 103, 2010
  12. Biso M, Ansaldo A, Futaba DN, Hata K, Ricci D, Carbon, 49, 2253, 2011
  13. Homenick CM, Sheardown H, Adronov A, J. Mater. Chem., 20, 2887, 2010
  14. Zhang YC, Broekhuis AA, Stuart MCA, Landaluce TF, Fausti D, Rudolf P, Picchioni F, Macromolecules, 41(16), 6141, 2008
  15. Jakubinek MB, Ashrafi B, Guan J, Johnson MB, White MA, Simard B, RSC Adv., 4, 57564, 2014
  16. Shaffer MS, Fan X, Windle A, Carbon, 36, 1603, 1998
  17. Ros TG, Van Dillen AJ, Geus JW, Koningsberger DC, Chem.-Eur. J., 8, 1151, 2002
  18. Hamilton RF, Wu N, Xiang C, Li M, Yang F, Wolfarth M, Porter DW, Holian A, Part. Fibre. Toxicol., 11, 1, 2014
  19. Zalipsky S, Gilon C, Zilkha A, Eur. Polym. J., 19, 1177, 1983
  20. Zhu J, Peng HQ, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV, Adv. Funct. Mater., 14(7), 643, 2004
  21. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV, Nano Lett., 3, 1107, 2003
  22. Jiang C, Saha A, Xiang C, Young CC, Tour JM, Pasquali M, Marti AA, ACS Nano, 7, 4503, 2013
  23. DiLeo RA, Landi BJ, Raffaelle RP, J. Appl. Phys., 101, 064307, 2007