Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 885-891, 2017
Electrochemical properties of α-Co(OH)2/graphene nano-flake thin film for use as a hybrid supercapacitor
Porous nano-flake-like α-Co(OH)2 thin films were prepared by electro-deposition on graphene nanosheets (GNS) and functionalized f-GNS at 1.0 V. The functionality of hydrophilic functional groups was increased by acid treatment to enhance electrode wettability and improve the compatibility between the electrode and the electrolyte. Hydrophilic functional groups can act as anchoring sites for the precursors, enabling Co(OH)2 to more grow easily on an f-GNS electrode. The density and thickness of the α-Co(OH)2 deposition on the f-GNS electrode (13.1 μm) was greater than that on the GNS (12.3 μm) electrode. The specific discharge capacitance of the α-Co(OH)2/f-GNS electrode decreased from an initial value of 2,149mFcm-2 to 1,944 mFcm-2 over 1000 cycles, demonstrating the retention of 90% of its discharge capacitance. A hybrid capacitor was also assembled to evaluate the characteristics of a two-electrode system using α-Co(OH)2/f-GNS as the cathode. The power and energy densities of the Co(OH)2/f-GNS supercapacitor are 1,137Wkg-1 and 43Whkg-1 at 8mAcm-2, respectively.
[References]
  1. Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C, Electrochim. Acta, 50(20), 4174, 2005
  2. Luo H, Zheng L, Lei L, Zhang D, Wu J, Yang J, Korean J. Chem. Eng., 31(4), 712, 2014
  3. Tooming T, Thomberg T, Kurig H, Janes A, Lust E, J. Power Sources, 280, 667, 2015
  4. Fuertes AB, Sevilla M, Carbon, 94, 41, 2015
  5. Kalambate PK, Dar RA, Karna SP, Srivastava AK, J. Power Sources, 276, 262, 2015
  6. Li L, Hu MZA, An N, Yang YY, Li ZM, Wu HY, J. Phys. Chem. C, 118, 22865, 2014
  7. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW, Nature Commun., 4:1894, 1 (2013).
  8. Hu CC, Chen WC, Electrochim. Acta, 49(21), 3469, 2004
  9. Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853, 2004
  10. Yuan CZ, Hou LR, Shen LF, Li DK, Zhang F, Fan CG, Li JM, Zhang XG, Electrochim. Acta, 56(1), 115, 2010
  11. Chang JK, Wu CM, Sun IW, J. Mater. Chem., 20, 3729, 2010
  12. Chen Z, Chen Y, Zuo C, Zhou S, Xiao AG, Pan AX, Bull. Mat. Sci., 36, 239, 2013
  13. Liu Y, Wang N, Yang C, Hu W, Ceram. Int., 42, 11411, 2016
  14. Li D, Yu F, Yu Z, Sun X, Li Y, Mater. Lett., 158, 17, 2015
  15. Zhou FY, Liu QL, Gu JJ, Zhang W, Zhang D, Electrochim. Acta, 170, 328, 2015
  16. Lee HJ, Jin EM, Jeong SM, Korean Chem. Eng. Res., 54(2), 157, 2016
  17. Ashassi-Sorkhabi H, Badakhshan PL, Asghari E, Chem. Eng. J., 299, 282, 2016
  18. Peng TQ, Wang HW, Yi H, Jing YT, Sun P, Wang XF, Electrochim. Acta, 176, 77, 2015
  19. Hu CC, Chen JC, Chang KH, J. Power Sources, 221, 128, 2013
  20. Garcia EM, Lins VFC, Matencio T, Intech. Chapter, 5, 101, 2013
  21. Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860, 2011
  22. Chen CM, Huang JQ, Zhang Q, Gong WZ, Yang QH, Wang MZ, Yang YG, Carbon, 50, 659, 2012
  23. Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH, Chen Y, Fox B, Sci. Reports, 4:4375, 1 (2014).
  24. Dong P, Wang Y, Guo L, Liu B, Xin S, Zhang J, Shi Y, Zeng W, Yin S, Nanoscale, 4, 4641, 2012
  25. Peng C, Jin J, Chen GZ, Electrochim. Acta, 53(2), 525, 2007
  26. Yang J, Liu H, Martens WN, Frost RL, J. Phys. Chem. C, 114, 111, 2009
  27. Wu CM, Fan CY, Sun IW, Tsai WT, Chang JK, J. Power Sources, 196(18), 7828, 2011
  28. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, Zhang ML, Qian WZ, Wei F, Adv. Mater., 22(33), 3723, 2010
  29. Ensafi AA, Ahmadi N, Rezaei B, RSC Adv., 5, 91448, 2015
  30. Yan J, Fan ZJ, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F, Adv. Funct. Mater., 22(12), 2632, 2012
  31. Cheng Y, Zhang H, Varanasi CV, Liu J, Energy Environ. Sci., 6, 3314, 2013
  32. Chang J, Jin M, Yao F, Kim TH, Le VT, Yue H, Gunes F, Li B, Ghosh A, Xie S, Lee YH, Adv. Funct. Mater., 23, 5074, 2013