Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 876-884, 2017
Improvement of methane uptake inside graphene sheets using nitrogen, boron and lithium-doped structures: A hybrid molecular simulation
We investigated the storage capacity of methane on the pristine and doped graphene sheets using hybrid molecular dynamics - grand canonical Monte Carlo simulation method. Methane adsorption on two parallel graphene sheets with various distances was estimated at various pressures. According to the isotherm curves, the maximum amount of adsorbed methane was observed for graphene sheets with a distance layer of 1.2 nm. This optimum structure was further doped separately with lithium, nitrogen and boron atoms in various atomic percentages to examine methane storage contents. Results showed that lithium and nitrogen-doped graphene sheets could enhance the methane storage capacity of graphene sheets whereas boron did not have any significant effect on the methane uptake. The minimum content of dopant atoms for lithium and nitrogen was estimated as 1/12 (lithium atoms/carbon atoms) and 18.5 atomic percentage, respectively, to meet new DOE’s target for methane uptake.
[References]
  1. Duren T, Sarkisov L, Yaghi OM, Snurr RQ, Langmuir, 20(7), 2683, 2004
  2. Gadipelli S, Guo ZX, Prog. Mater. Sci., 69, 1, 2015
  3. Burchell T, M. Rogers. SAE Technical Paper (2000).
  4. Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095, 2004
  5. Vicente JL, Albesa AG, Description of Adsorbed Phases on Carbon Surfaces: A Comparative Study of Several Graphene Models, INTECH Open Access Publisher (2011).
  6. Solar C, Blanco AG, Vallone A, Sapag K, Natural Gas, 205, 2010
  7. Sudibandriyo M, Int. J. Eng. Technol., 11, 86, 2011
  8. Wang Y, Hashim M, Ercan C, Khawajah A, Othman R, 21st Annual Saudi-Japan Symposium, November (2011).
  9. Denis PA, Chem. Phys., 353, 79, 2008
  10. Yamamoto M, Itoh T, Sakamoto H, Fujimori T, Urita K, Hattori Y, Ohba T, Kagita H, Kanoh H, Niimura S, Adsorption, 17, 643, 2011
  11. Kowalczyk P, Solarz L, Do DD, Samborski A, MacElroy JMD, Langmuir, 22(21), 9035, 2006
  12. Yamashita A, Mori Y, Oshima T, Baba Y, Carbon, 76, 469, 2014
  13. Takenaka S, Shigeta Y, Otsuka K, Chem. Lett., 32(1), 26, 2003
  14. Kim J, Maiti A, Lin LC, Stolaroff JK, Smit B, Aines RD, Nat. Commun., 4, 1694, 2013
  15. Gomez-Gualdron DA, Wilmer CE, Farha OK, Hupp JT, Snurr RQ, J. Phys. Chem. C, 118, 6941, 2014
  16. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G, Nano Energy, 1, 195, 2012
  17. Lozano-Castello D, Alcaniz-Monge J, de la Casa-Lillo MA, Cazorla-Amoros D, Linares-Solano A, Fuel, 81(14), 1777, 2002
  18. Khorashadizadeh M, Shahrak MN, Shahsavand A, Korean J. Chem. Eng., 31(11), 1994, 2014
  19. Chen JJ, Li WW, Li XL, Yu HQ, Environ. Sci. Technol., 46, 10341, 2012
  20. Wang YG, Ercan C, Khawajah A, Othman R, AIChE J., 58(3), 782, 2012
  21. Heller R, Zoback M, J. Unconventional Oil and Gas Resources, 8, 14, 2014
  22. Giraldo L, Moreno-Pirajan JC, Mater. Sci. Appl., 2, 331, 2011
  23. Molashahi M, Hashemipour H, Korean J. Chem. Eng., 29(5), 601, 2012
  24. Syed-Hassan SSA, Zaini MSM, Korean J. Chem. Eng., 1, 2015
  25. Mosher K, He JJ, Liu YY, Rupp E, Wilcox J, Int. J. Coal Geol., 109, 36, 2013
  26. Zhao W, Meng QY, Advanced Materials Research, Trans Tech Publ (2013).
  27. Kim BH, Kum GH, Seo YG, Korean J. Chem. Eng., 20(1), 104, 2003
  28. Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, J. Chem. Phys., 142, 234704, 2015
  29. Kumar R, Suresh VM, Maji TK, Rao C, Chem. Commun., 50, 2015, 2014
  30. Monemtabary S, Niasar MS, Jahanshahi M, Ghoreyshi AA, System, 2, 17, 2013
  31. Rasoolzadeh M, Fatemi S, Gholamhosseini M, Moosaviyan MA, Iran J. Chem. Chem. Eng., 27, 2008
  32. Zhang XR, Wang WC, Fluid Phase Equilib., 194, 289, 2002
  33. Lee KH, Oh J, Son JG, Kim H, Lee SS, ACS Appl. Mater. Interfaces, 6, 6361, 2014
  34. Wang L, Sofer Z, Luxa J, Pumera M, J. Mater. Chem. C, 2, 2887, 2014
  35. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J, J. Mater. Chem., 21, 8038, 2011
  36. Li XL, Wang HL, Robinson JT, Sanchez H, Diankov G, Dai HJ, J. Am. Chem. Soc., 131(43), 15939, 2009
  37. Bai S, Shen X, RSC Adv., 2, 64, 2012
  38. Zhu Z, Zheng Q, Appl. Therm. Eng., 108, 605, 2016
  39. Dai J, Yuan J, Giannozzi P, Appl. Phys. Lett., 95, 232105, 2009
  40. Qu L, Liu Y, Baek JB, Dai L, ACS Nano, 4, 1321, 2010
  41. Gopalakrishnan K, Moses K, Dubey P, Rao C, J. Mol. Struct., 1023, 2, 2012
  42. Wang Y, Feng Y, Meng G, Dong X, Huang X, Phys. Status Solidi B., 2015
  43. Fan X, Zheng W, Kuo JL, ACS Appl. Mater. Interfaces, 4, 2432, 2012
  44. Zhao L, Levendorf M, Goncher S, Schiros T, Palova L, Zabet-Khosousi A, Rim KT, Gutierrez C, Nordlund D, Jaye C, Nano Lett., 13, 4659, 2013
  45. Yang Z, Cao D, J. Phys. Chem. C, 116, 12591, 2012
  46. Lan J, Cao D, Wang W, Langmuir, 26, 220, 2009
  47. Dimitrakakis GK, Tylianakis E, Froudakis GE, Nano Lett., 8, 3166, 2008
  48. Wu P, Qian Y, Du P, Zhang H, Cai C, J. Mater. Chem., 22, 6402, 2012
  49. Stadie NP, California Institute of Technology, PhD (2013).
  50. Liu XQ, Xue Y, Tian ZY, Mo JJ, Qiu NX, Chu W, Xie HP, Appl. Surf. Sci., 285, 190, 2013
  51. Ewels C, Glerup M, Krstic V, Basiu V, Basiuk E, In: Chemistry of Carbon Nanotubes, American Scientific Publishers (2007).
  52. Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elias AL, Cruz-Silva R, Gutierrez HR, Sci. Rep., 2 (2012).
  53. Tachikawa H, Iyama T, Azumi K, Jpn. J. Appl. Phys., 50, 01BJ03, 2011
  54. Kumar KV, Preuss K, Lu L, Guo ZX, Titirici MM, J. Phys. Chem. C, 119, 22310, 2015
  55. Niu LY, Li ZP, Hong W, Sun JF, Wang ZF, Ma LM, Wang JQ, Yang SR, Electrochim. Acta, 108, 666, 2013
  56. Xu X, Yuan T, Zhou YK, Li YW, Lu JM, Tian XH, Wang DL, Wang J, Int. J. Hydrog. Energy, 39(28), 16043, 2014
  57. Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, Comput. Theor. Chem., 1084, 43, 2016
  58. Zheng JM, Ren ZY, Guo P, Fang L, Fan J, Appl. Surf. Sci., 258(5), 1651, 2011
  59. Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday JN, Drew HD, Nat. Commun., 5, 2014
  60. Yang S, Feng X, Wang X, Mullen K, Angew. Chem.-Int. Edit., 50, 5339, 2011
  61. Yang G, Han H, Li T, Du C, Carbon, 50, 3753, 2012
  62. Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y, Nanoscale, 5, 3457, 2013
  63. Zhou M, Li X, Cui J, Liu T, Cai T, Zhang H, Guan S, Int. J. Electrochem. Sci., 7, 9984, 2012
  64. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li WX, Fu Q, Ma X, Xue Q, Chem. Mater., 23, 1188, 2011
  65. Lu YF, Lo ST, Lin JC, Zhang W, Lu JY, Liu FH, Tseng CM, Lee YH, Liang CT, Li LJ, ACS Nano, 7, 6522, 2013
  66. Yeom DY, Jeon W, Tu NDK, Yeo SY, Lee SS, Sung BJ, Chang H, Lim JA, Kim H, Sci. Rep., 5, 2015
  67. Zhang YZ, Sun RX, Luo BM, Wang LJ, Electrochim. Acta, 156, 228, 2015
  68. Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD, Anal. Chem., 86, 4423, 2014
  69. Lin T, Huang F, Liang J, Wang Y, Energy Environ. Sci., 4, 862, 2011
  70. Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH, J. Mater. Chem., 22, 390, 2012
  71. Sahoo M, Sreena KP, Vinayan BP, Ramaprabhu S, Mater. Res. Bull., 61, 383, 2015
  72. Sugawara K, Kanetani K, Sato T, Takahashi T, AIP Advances, 1, 022103, 2011
  73. Han SS, Jang SS, Chem. Commun., 5427, 2009
  74. Malek K, Sahimi M, J. Chem. Phys., 132, 014310, 2010
  75. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers A, Feenstra KA, van Drunen R, Gromacs User Manual (2010).
  76. T. a.C.B. Group, VMD User’s Guide (2012).
  77. Lithoxoos GP, Peristeras LD, Boulougouris GC, Economou IG, Mol. Phys., 110, 1153, 2012
  78. Chandrasekhar J, Spellmeyer DC, Jorgensen WL, J. Am. Chem. Soc., 106, 903, 1984
  79. Peng Z, Ewig CS, Hwang MJ, Waldman M, Hagler AT, J. Phys. Chem. A, 101, 7243, 1997
  80. Kalugin ON, Prezhdo OV, Chaban VV, Microscopic structure and dynamics of molecular liquids and electrolyte solutions confined by Carbon NanoTubes: Molecular dynamics simulations, INTECH Open Access Publisher (2011).
  81. Rappe AK, Casewit CJ, Colwell K, Iii WG, Skiff W, J. Am. Chem. Soc., 114, 10024, 1992
  82. Mao AH, Pappu RV, J. Chem. Phys., 137, 064104, 2012
  83. Kalugin ON, Adya AK, Volobuev MN, Kolesnik YV, Phys. Chem. Chem. Phys., 5, 1536, 2003
  84. Chaban V, Kalugin O, J. Mol. Liq., 145, 145, 2009
  85. Han SS, van Duin AC, Goddard WA, Lee HM, J. Phys. Chem. A, 109, 4575, 2005
  86. Cuadros F, Cachadina I, Ahumada W, Mol. Eng., 6, 319, 1996
  87. Ortiz L, Kuchta B, Firlej L, Roth M, Wexler C, Mater. Res. Express, 3, 055011, 2016