Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 844-853, 2017
Quantitative estimation of internal concentration polarization in a spiral wound forward osmosis membrane module compared to a flat sheet membrane module
Internal concentration polarization (ICP) within the forward osmosis (FO) membrane affects the reduction of driving force. The magnitude of ICP in the FO membrane was investigated experimentally by measuring water flux in both spiral wound (SW) and flat-sheet (FS) modules with different draw solutions (sodium chloride, sodium sulfate, and disodium phosphate). The FO SW module always shows inferior water flux performance to the FO FS module. The water flux in the FO SW module can be easily estimated by just changing structure parameter. The estimated structure parameter in the FO SW module is 9.1325×10-4 m, which is quite higher than 4.2×10-4 m in the FO FS module. The increase of the structure parameter is attributed to the bending of the FO membrane in the SW module. It can be concluded that a module design such like SW type is not suitable for the FO process.
[References]
  1. Cath TY, Childress AE, Elimelech M, J. Membr. Sci., 281(1-2), 70, 2006
  2. Chung TS, Zhang S, Wang KY, Su JC, Ling MM, Desalination, 287, 78, 2012
  3. Kim DY, Gu B, Kim JH, Yang DR, J. Membr. Sci., 444, 440, 2013
  4. McCutcheon JR, McGinnis RL, Elimelech M, Desalination, 174(1), 1, 2005
  5. Shaffer DL, Yip NY, Gilron J, Elimelech M, J. Membr. Sci., 415, 1, 2012
  6. Achilli A, Cath TY, Marchand EA, Childress AE, Desalination, 239(1-3), 10, 2009
  7. Lutchmiah K, Verliefde A, Roest K, Rietveld LC, Cornelissen ER, Water Res., 58, 179, 2014
  8. Su JC, Chung TS, Helmer BJ, de Wit JS, J. Membr. Sci., 396, 92, 2012
  9. Achilli A, Cath TY, Childress AE, J. Membr. Sci., 343(1-2), 42, 2009
  10. She QH, Jin X, Tang CYY, J. Membr. Sci., 401, 262, 2012
  11. Yip NY, Elimelech M, Environ. Sci. Technol., 46, 5230, 2012
  12. Jin X, Shan JH, Wang C, Wei J, Tang CYY, J. Hazard. Mater., 227, 55, 2012
  13. Yang Q, Wang KY, Chung TS, Sep. Purif. Technol., 69(3), 269, 2009
  14. Gray GT, McCutcheon JR, Elimelech M, Desalination, 197(1-3), 1, 2006
  15. McCutcheon JR, Elimelech M, J. Membr. Sci., 284(1-2), 237, 2006
  16. Tang CYY, She QH, Lay WCL, Wang R, Fane AG, J. Membr. Sci., 354(1-2), 123, 2010
  17. Zhang S, Wang KY, Chung TS, Chen HM, Jean YC, Amy G, J. Membr. Sci., 360(1-2), 522, 2010
  18. Wei J, Qiu CQ, Tang CYY, Wang R, Fane AG, J. Membr. Sci., 372(1-2), 292, 2011
  19. Ingole PG, Ingole NP, Korean J. Chem. Eng., 31(12), 2109, 2014
  20. Loeb S, Titelman L, Korngold E, Freiman J, J. Membr. Sci., 129(2), 243, 1997
  21. Arena JT, McCloskey B, Freeman BD, McCutcheon JR, J. Membr. Sci., 375(1-2), 55, 2011
  22. Bui NN, Lind ML, Hoek EMV, McCutcheon JR, J. Membr. Sci., 385(1-2), 10, 2011
  23. Fang WX, Wang R, Chou SR, Setiawan L, Fane AG, J. Membr. Sci., 394, 140, 2012
  24. Hong SS, Ryoo W, Chun MS, Chung GY, Korean J. Chem. Eng., 32(7), 1249, 2015
  25. Klaysom C, Cath TY, Depuydt T, Vankelecom IF, Chem. Soc. Rev., 42, 6959, 2013
  26. Cornelissen E, Harmsen D, Beerendonk E, Qin J, Kappelhof J, J. Water Reuse Desalin., 1, 133, 2011
  27. Kim YC, Park SJ, Environ. Sci. Technol., 45, 7737, 2011
  28. Achilli A, Cath TY, Childress AE, J. Membr. Sci., 364(1-2), 233, 2010
  29. Hancock NT, Cath TY, Environ. Sci. Technol., 43, 6769, 2009
  30. Ng HY, Tang W, Wong WS, Environ. Sci. Technol., 40, 2408, 2006
  31. Kim JE, Phuntsho S, Lotfi F, Shon HK, Desalin. Water. Treat., 53, 2782, 2015
  32. Xu Y, Peng XY, Tang CYY, Fu QSA, Nie SZ, J. Membr. Sci., 348(1-2), 298, 2010
  33. Gu B, Kim DY, Kim JH, Yang DR, J. Membr. Sci., 379(1-2), 403, 2011
  34. Kim DY, Gu B, Yang DR, Korean J. Chem. Eng., 30(9), 1691, 2013
  35. Kwon SB, Lee JS, Kwon SJ, Yun ST, Lee S, Lee JH, J. Membr. Sci., 488, 111, 2015
  36. Huang LW, Bui NN, Meyering MT, Hamlin TJ, McCutcheon JR, J. Membr. Sci., 437, 141, 2013