Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 757-767, 2017
Response surface modeling, isotherm, thermodynamic and optimization study of arsenic (V) removal from aqueous solutions using modified bentonite-chitosan (MBC)
Arsenic contamination, a worldwide concern, has received a great deal of attention due to its toxicity and carcinogenicity. In the present study, we focused on the combined application of modified bentonite and chitosan (MBC) for the removal of As(V). Arsenic removal experiments were carried out to determine the amount of As(V) adsorbed as a function of pH (2-8), sorbent dosage (0.1-1.5 g/L), As(V) concentration (20-200mg/L) and time (60-240 min). The system was optimized by means of response surface methodology. The analysis of variance (ANOVA) of the quadratic model demonstrated that the model was highly significant (R2?97.3%). Optimized values of pH, sorbent dosage, initial As(V) concentration and time were found to be 3.7, 1.40 g/L, 69mg/L, and 167min, respectively. The results reveal that the prepared adsorbent has a high adsorption capacity (122.23mg/g) for As(V) removal. Among the isotherm models used, the Langmuir isotherm model was the best fit for the obtained data. The adsorption kinetics following a pseudo-second-order kinetic model was involved in the adsorption process of As(V). Thermodynamic studies confirmed the spontaneous and endothermic character of adsorption process.
[References]
  1. Zehhaf A, Benyoucef A, Quijada C, Taleb S, Morallon E, IJEST, 12, 595, 2015
  2. Gerente C, Andres Y, McKay G, Le Cloirec P, Chem. Eng. J., 158(3), 593, 2010
  3. Anjum A, Seth CK, Datta M, Adsorp. Sci. Technol., 31, 303, 2013
  4. Keshavarzi, Moore F, Mosaferi M, Rahmani F, Water. Qual. Expo. Health, 3, 135, 2011
  5. Qi JY, Zhang GS, Li HN, Bioresour. Technol., 193, 243, 2015
  6. Monvisade P, Siriphannon P, AAPG Bull., 42, 427, 2009
  7. Organization WH, Guidelines for drinking-water quality: Recommendations, World Health Organization (2004).
  8. Gang DD, Deng BL, Lin LS, J. Hazard. Mater., 182(1-3), 156, 2010
  9. Septhum C, Rattanaphani S, Bremner JB, Rattanaphani V, J. Hazard. Mater., 148(1-2), 185, 2007
  10. Dutta PK, Dutta J, Multifaceted development and application of biopolymers for biology, Biomedicine and nanotechnology, Springer (2013).
  11. Huang R, Yang B, Liu Q, Liu Y, J. Appl. Polym. Sci., 131, 2014
  12. Wan MW, Petrisor IG, Lai HT, Kim D, Yen TF, Carbohydr. Polym., 55, 249, 2004
  13. Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW, Carbohydr. Polym., 83, 528, 2011
  14. Grisdanurak N, Akewaranugulsiri S, Futalan CM, Tsai WC, Kan CC, Hsu CW, Wan MW, J. Appl. Polym. Sci., 125, 2012
  15. Lu MC, Agripa ML, Wan MW, Dalida MLP, Desalin. Water. Treat., 52, 873, 2014
  16. Huang RH, Zheng DS, Yang BC, Wang B, Energy Sources Part A-Recovery Util. Environ. Eff., 38(4), 519, 2016
  17. Xi YF, Frost RL, He HP, Kloprogge T, Bostrom T, Langmuir, 21(19), 8675, 2005
  18. Guo JZ, Chen SW, Liu L, Li B, Yang P, Zhang LJ, Feng YL, J. Colloid Interface Sci., 382, 61, 2012
  19. Ba K, He L, Tang H, Gao J, Zhu S, Li Y, Sun W, KUI, 63, 253, 2014
  20. Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS, Boddu VM, Smith ED, Sep. Sci. Technol., 38(15), 3775, 2003
  21. Lenth RV, J. Stat. Soft, 32, 1, 2009
  22. Kalyani S, Krishnaiah A, Boddu VM, Sep. Sci. Technol., 42(12), 2767, 2007
  23. Liu Q, Yang B, Zhang L, Huang R, Korean J. Chem. Eng., 32(7), 1314, 2015
  24. Kalavathy H, Regupathi I, Pillai MG, Miranda LR, Colloids Surf. B: Biointerfaces, 70, 35, 2009
  25. Liu Y, Zheng Y, Wang A, Adsorp. Sci. Technol., 28, 913, 2010
  26. Wang G, Zhang S, Li T, Xu X, Zhong Q, Chen Y, Deng O, Li Y, RSC Adv., 5, 58010, 2015
  27. Cho DW, Jeon BH, Chon CM, Kim Y, Schwartz FW, Lee ES, Song H, Chem. Eng. J., 200, 651, 2012
  28. Ramesh A, Hasegawa H, Maki T, Ueda K, Sep. Purif. Technol., 56(1), 90, 2007
  29. Umpuch C, Sakaew S, Desalin. Water. Treat., 53, 2962, 2015
  30. Samarghandi MR, Zarrabi M, Amrane A, Sepehr MN, Noroozi M, Namdari S, Zarei A, Desalin. Water. Treat., 40, 137, 2012
  31. Jafari AJ, Kakavandi B, Kalantary RR, Gharibi H, Asadi A, Azari A, Babaei AA, Takdastan A, Korean J. Chem. Eng., 33(10), 2878, 2016
  32. Cho DW, Jeon BH, Chon CM, Kim Y, Schwartz FW, Lee ES, Song H, Chem. Eng. J., 200, 654, 2012
  33. An JH, Dultz S, Clay Clay Min., 56, 549, 2008
  34. Ramesh A, Hasegawa H, Maki T, Ueda K, Sep. Purif. Technol., 56(1), 90, 2007
  35. Lafferty BJ, Loeppert RH, Environ. Sci. Technol., 39, 2120, 2005
  36. Qi JY, Zhang GS, Li HN, Bioresour. Technol., 193, 243, 2015
  37. Mcafee BJ, Gould WD, Nadeau JC, da Costa ACA, Sep. Sci. Technol., 36(14), 3207, 2001
  38. Gupta A, Chauhan VS, Sankararamakrishnan N, Water Res., 43, 3862, 2009
  39. Miller SM, Zimmerman JB, Water Res., 44, 5722, 2010
  40. Seko N, Basuki F, Tamada M, Yoshii F, React. Funct. Polym., 59(3), 235, 2004
  41. Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R, Water Res., 42, 633, 2008
  42. Pontoni L, Fabbricino M, Carbohydr. Res., 356, 86, 2012
  43. Singh P, Bajpai J, Bajpai AK, Shrivastava RB, Indian J. Chem. Technol., 18(5), 403, 2011
  44. Khan H, Khalil AK, Khan A, Saeed K, Ali N, Korean J. Chem. Eng., 33(10), 2802, 2016
  45. Rani M, Maken S, Korean J. Chem. Eng., 30(8), 1636, 2013
  46. Argun ME, Dursun S, Ozdemir C, Karatas M, J. Hazard. Mater., 141(1), 77, 2007