Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 672-680, 2017
The effects of mineral salt catalysts on selectivity of phenolic compounds in bio-oil during microwave pyrolysis of peanut shell
Catalytic microwave pyrolysis of peanut shell (PT) using Fe3O4, Na2CO3, NaOH, and KOH for production of phenolic-rich bio-oil was investigated. The effects of catalyst type, pyrolysis temperature, and biomass/catalyst ratio on product distribution and composition were studied. Among four catalysts tested, Na2CO3 significantly increased the selectivity of phenolic compounds in bio-oil during microwave pyrolysis. The highest phenolics concentration of 57.36% (area) was obtained at 500 °C and PT : Na2CO3 ratio of 8 : 1. The catalytic effect to produce phenolic compounds among all the catalysts tested can be summarized in the order Na2CO3>Fe3O4>KOH>NaOH. Using KOH and NaOH as catalyst resulted in formation of bio-oil with enhanced higher heating value (HHV) and lower oxygen content, indicating that these catalysts enhanced the deoxygenation of bio-oil. The scanning-electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analysis of char particles showed the melting of magnetite and vaporizationcondensation of mineral salt catalysts on char particle, which was attributed to extremely high local temperatures during microwave heating.
[References]
  1. Wang N, Tahmasebi A, Yu JL, Xu J, Huang F, Mamaeva A, Bioresour. Technol., 190, 89, 2015
  2. Bridgwater AV, Meier D, Radlein D, Org. Geochem., 30, 1479, 1999
  3. Thangalazhy-Gopakumar S, Adhikari S, Gupta RB, Tu MB, Taylor S, Bioresour. Technol., 102(12), 6742, 2011
  4. Rocha JD, Luengo CA, Snape CE, Renew. Energy, 9, 950, 1996
  5. Maher KD, Bressler DC, Bioresour. Technol., 98(12), 2351, 2007
  6. Barta K, Ford PC, Acc. Chem. Res., 47, 1503, 2014
  7. Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM, Energy Conv. Manag., 76, 1073, 2013
  8. Tripathi M, Sahu JN, Ganesan P, Jewaratnam J, Appl. Therm. Eng., 105, 605, 2016
  9. Thangalazhy-Gopakumar S, Al-Nadheri WMA, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S, Bioresour. Technol., 178, 65, 2015
  10. Hossain MA, Jewaratnam J, Ganesan P, Sahu JN, Ramesh S, Poh SC, Energy Conv. Manag., 115, 232, 2016
  11. Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R, J. Anal. Appl. Pyrolysis, 86, 161, 2009
  12. Wang Y, Hu X, Song Y, Min ZH, Mourant D, Li TT, Gunawan R, Li CZ, Fuel Process. Technol., 116, 234, 2013
  13. Gunawan R, Li X, Lievens C, Gholizadeh M, Chaiwat W, Hu X, Mourant D, Bromly J, Li CZ, Fuel, 111, 709, 2013
  14. Yin CG, Bioresour. Technol., 120, 273, 2012
  15. Chattopadhyay J, Son JE, Pak D, Korean J. Chem. Eng., 28(8), 1677, 2011
  16. Chen MQ, Wang J, Zhang MX, Chen MG, Zhu XF, Min FF, Tan ZC, J. Anal. Appl. Pyrolysis, 82, 145, 2008
  17. Peng CN, Zhang GY, Yue JR, Xu GW, Fuel Process. Technol., 124, 212, 2014
  18. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73, 2010
  19. Miura M, Kaga H, Sakurai A, Kakuchi T, Takahashi K, J. Anal. Appl. Pyrolysis, 71, 187, 2004
  20. Salema AA, Ani FN, Bioresour. Technol., 125, 102, 2012
  21. Effendi A, Gerhauser H, Bridgwater AV, Renew. Sust. Energ. Rev., 12, 2092, 2008
  22. Kim JS, Bioresour. Technol., 178, 90, 2015
  23. Zhou S, Garcia-Perez M, Pecha B, Kersten SRA, McDonald AG, Westerhof RJM, Energy Fuels, 27(10), 5867, 2013
  24. Aziz SMA, Wahi R, Ngaini Z, Hamdan S, Fuel Process. Technol., 106, 744, 2013
  25. Bu Q, Lei HW, Wang L, Wei Y, Zhu L, Liu YP, Liang J, Tang JM, Bioresour. Technol., 142, 546, 2013
  26. Lu Q, Zhang ZB, Yang XC, Dong CQ, Zhu XF, J. Anal. Appl. Pyrolysis, 104, 139, 2013
  27. Wang N, Tahmasebi A, Yu JL, Xu J, Huang F, Mamaeva A, Bioresour. Technol., 190, 89, 2015
  28. Meng FR, Tahmasebi A, Yu JL, Zhao H, Han YN, Lucas J, Wall T, Energy Fuels, 28(9), 5612, 2014
  29. Yuan T, Tahmasebi A, Yu JL, Bioresour. Technol., 175, 333, 2015
  30. Menendez JA, Juarez-Perez EJ, Ruisanchez E, Bermudez JM, Arenillas A, Carbon, 49, 346, 2011
  31. Salema AA, Ani FN, J. Anal. Appl. Pyrolysis, 96, 162, 2012
  32. Namazi AB, Allen DG, Jia CQ, Biomass Bioenerg., 73, 217, 2015
  33. Bu Q, Lei HW, Ren SJ, Wang L, Zhang Q, Tang JM, Ruan RG, Bioresour. Technol., 108, 274, 2012
  34. Mamaeva A, Tahmasebi A, Tian L, Yu JL, Bioresour. Technol., 211, 382, 2016
  35. Omoriyekomwan JE, Tahmasebi A, Yu JL, Bioresour. Technol., 207, 188, 2016
  36. Brammer JG, Lauer M, Bridgwater A, Energy Policy, 34(17), 2871, 2006
  37. Kim SJ, Jung SH, Kim JS, Bioresour. Technol., 101(23), 9294, 2010
  38. Meng FR, Yu JL, Tahmasebi A, Han YN, Zhao H, Lucas J, Wall T, Energy Fuels, 28(1), 275, 2014
  39. Lopez MCB, Blanco CG, Martinez-Alonso A, Tascon JMD, J. Anal. Appl. Pyrolysis, 65, 313, 2002