Issue
Korean Journal of Chemical Engineering,
Vol.34, No.3, 609-618, 2017
Ultrafine palladium nanoparticle-bonded to polyetheylenimine grafted reduced graphene oxide nanosheets: Highly active and recyclable catalyst for degradation of dyes and pigments
Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.
[References]
  1. He HB, Li B, Dong JP, Lei YY, Wang TL, Yu QW, Feng YQ, Sun YB, ACS Appl. Mater. Interfaces, 5, 8058, 2013
  2. Li S, Li H, Liu J, Zhang H, Yang Y, Yang Z, Wang L, Wang B, J. Chem. Soc.-Dalton Trans., 44, 9193, 2015
  3. Yang SY, Yang X, Shao XT, Niu R, Wang LL, J. Hazard. Mater., 186(1), 659, 2011
  4. Sekar S, Surianarayanan M, Ranganathan V, MacFarlane DR, Mandal AB, Environ. Sci. Technol., 46, 4902, 2012
  5. Canizares P, Martinez F, Jimenez C, Lobato J, Rodrigo MA, Environ. Sci. Technol., 40, 6418, 2006
  6. Zhou L, He B, Huang J, ACS Appl. Mater. Interfaces, 5, 8678, 2013
  7. Laera G, Cassano D, Lopez A, Pinto A, Pollice A, Ricco G, Mascolo G, Environ. Sci. Technol., 46, 1010, 2012
  8. Oller I, Malato S, Sanchez-Perez JA, Sci. Total Environ., 409, 4141, 2011
  9. Su Y, Lu X, Xie M, Geng H, Wei H, Yang Z, Zhang Y, Nanoscale, 5, 8889, 2013
  10. Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR, J. Am. Chem. Soc., 133(11), 3693, 2011
  11. Abhilash, Revati K, Pandey BD, Bull. Mat. Sci., 34, 191, 2011
  12. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y, Chem. Soc. Rev., 40, 44, 2011
  13. Deng YH, Cai Y, Sun ZK, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao DY, J. Am. Chem. Soc., 132(24), 8466, 2010
  14. Chaudhuri RG, Paria S, J. Chem. Soc.-Dalton Trans., 43, 5526, 2014
  15. Fu G, Tao L, Zhang M, Chen Y, Tang Y, Lin J, Lu T, Nanoscale, 5, 8007, 2013
  16. Wang Z, Zheng S, Cai J, Wang P, Feng J, Yang X, Zhang L, Ji M, Wu F, He N, Wan N, Anal. Chem., 85, 11602, 2013
  17. Li Y, Su H, Wong KS, Li XY, J. Phys. Chem. C, 114, 10463, 2010
  18. Xu ZC, Hou YL, Sun SH, J. Am. Chem. Soc., 129(28), 8698, 2007
  19. Huo X, Liu J, Wang B, Zhang H, Yang Z, She X, Xi P, J. Mater. Chem. A, 1, 651, 2013
  20. Yin S, Zhang Y, Kong J, Zou C, Li CM, Lu X, Ma J, Boey FYC, Chen X, ACS Nano, 5, 3831, 2011
  21. Knabel A, Stehle S, Schafer RB, Schulz R, Environ. Sci. Technol., 46, 8397, 2012
  22. Fu G, Wu K, Lin J, Tang Y, Chen Y, Zhou Y, Lu T, J. Phys. Chem. C, 117, 9826, 2013
  23. Xu Z, Shen C, Hou Y, Gao H, Sun S, Chem. Mater., 21, 1778, 2009
  24. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339, 1958
  25. Qu K, Wu L, Ren J, Qu X, ACS Appl. Mater. Interfaces, 4, 5001, 2012
  26. Pei S, Zhao J, Du J, Ren W, Cheng HM, Carbon, 48, 4466, 2010
  27. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806, 2010
  28. Jiang F, Li R, Cai J, Xu W, Cao A, Chen D, Zhang X, Wang C, Shu C, J. Mater. Chem. A, 3, 19433, 2015
  29. Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM, Chem. Mater., 22, 5695, 2010
  30. Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K, J. Am. Chem. Soc., 134(22), 9082, 2012
  31. Paloniemi H, Lukkarinen M, Aaritalo T, Areva S, Leiro J, Heinonen M, Haapakka K, Lukkari J, Langmuir, 22(1), 74, 2006
  32. Fu GT, Jiang X, Tao L, Chen Y, Lin J, Zhou YM, Tang YW, Lu TH, Langmuir, 29(13), 4413, 2013
  33. Won SW, Park J, Mao J, Yun YS, Bioresour. Technol., 102(4), 3888, 2011
  34. Han J, Wang L, Guo R, J. Mater. Chem., 22, 5932, 2012
  35. Yang TZ, Shen CM, Li Z, Zhang HR, Xiao CW, Chen ST, Xu ZC, Shi DX, Li JQ, Gao HJ, J. Phys. Chem. B, 109(49), 23233, 2005
  36. Das J, Aziz MA, Yang H, J. Am. Chem. Soc., 128(50), 16022, 2006
  37. Wei Z, Sun J, Li Y, Datye AK, Wang Y, Chem. Soc. Rev., 41, 7994, 2012
  38. Venkatesan P, Santhanalakshmi J, Langmuir, 26(14), 12225, 2010
  39. Nemanashi M, Meijboom R, J. Colloid Interface Sci., 389, 260, 2013
  40. Huang JF, Vongehr S, Tang SC, Lu HM, Shen JC, Meng XK, Langmuir, 25(19), 11890, 2009