Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 495-499, 2017
Polyol-mediated synthesis of ZnO nanoparticle-assembled hollow spheres/nanorods and their photoanode performances
ZnO nanoparticle-assembled hollow spheres (raspberry-like) and elliptical nanorods (rice-like) were synthesized via a facile polyol process. Employing ethylene glycol as a polyol led to a ZnO nanoparticle-assembled hollow sphere structure, while diethylene glycol resulted in an elliptical nanorod structure. The ZnO hollow spheres had a higher Brunauer-Emmett-Teller (BET) surface area, better dye adsorption, more incident light trapping, and lower defect density than the ZnO elliptical nanorods. The ZnO hollow sphere-based dye-sensitized solar cells (DSSCs) exhibited a three-times higher current density than the ZnO elliptical nanorod-based DSSCs.
[References]
  1. Anta JA, Guillen E, Tena-Zaeta R, J. Phys. Chem., 116, 11413, 2012
  2. Park SHK, Hwang CS, Ryu M, Yang S, Byun C, Shin J, Lee JI, Lee K, Oh MS, Im S, Adv. Mater., 21(6), 678, 2009
  3. Reyes PI, Ku CJ, Duan Z, Xu Y, Garfunkel E, Lu Y, Appl. Phys. Lett., 101, 031118, 2012
  4. Farzadkia M, Rahmani K, Gholami M, Esrafili A, Rahmani A, Rahmani H, Korean J. Chem. Eng., 31(11), 2014, 2014
  5. Sherly ED, Vijaya JJ, Kennedy LJ, Meenakshisundaram A, Lavanya M, Korean J. Chem. Eng., 33(4), 1431, 2016
  6. Selopal GS, Memarian N, Milan R, Concina I, Sberveglieri G, ACS Appl. Mater. Interfaces, 6, 11236, 2014
  7. Wang CL, Liao JY, Zhao Y, Manthiram A, Chem. Commun., 51, 2848, 2015
  8. Zheng HD, Tachibana Y, Kalantar-zadeh K, Langmuir, 26(24), 19148, 2010
  9. Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang PD, J. Phys. Chem. B, 110(45), 22652, 2006
  10. Chou TP, Zhang QF, Fryxell GE, Cao GZ, Adv. Mater., 19(18), 2588, 2007
  11. Das PP, Agarkar SA, Mukhopadhyay S, Manju U, Ogale SB, Devi PS, Inorg. Chem., 53(8), 3961, 2014
  12. Xu JL, Fan K, Shi WY, Li K, Peng TY, Sol. Energy, 101, 150, 2014
  13. Ramakrishnan R, Aravind A, Devaki SJ, Varma MR, Mohan K, J. Phys. Chem. C, 118, 19529, 2014
  14. Chen X, Bai Z, Yan X, Yuan H, Zhang G, Lin P, Zhang Z, Liu Y, Zhang Y, Nanoscale, 6, 4691, 2014
  15. Shi Y, Zhu C, Wang L, Li W, Cheng C, Ho KM, Fung KK, Wang N, J. Mater. Chem., 22, 13097, 2012
  16. Jana A, Das PP, Agarkar SA, Devi PS, Sol. Energy, 102, 143, 2014
  17. Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G, Angew. Chem.-Int. Edit., 50, 12321, 2011
  18. Hu XL, Gong JM, Zhang LZ, Yu JC, Adv. Mater., 20(24), 4845, 2008
  19. Thavasia V, Renugopalakrishnan V, Jose R, Ramakrishna S, Mater. Sci. Eng. R-Rep., 63, 81, 2009
  20. Khoa NT, Kim SW, Yoo DH, Cho S, Kim EJ, Hahn SH, ACS Appl. Mater. Interfaces, 7, 3524, 2015
  21. Barpuzary D, Patra AS, Vaghasiya JV, Solanki BG, Soni SS, Qureshi M, ACS Appl. Mater. Interfaces, 6, 12629, 2014
  22. Dakhlaoui A, Jendoubi M, Smiri LS, Kanaev A, Jouini N, J. Cryst. Growth, 311(16), 3989, 2009
  23. Hwang SH, Shin DH, Yun J, Kim C, Choi M, Jang J, Chem.-Eur. J., 20, 4439, 2014
  24. Zhang Q, Myers D, Lan J, Jenekhe SA, Cao G, Phys. Chem. Chem. Phys., 14, 14982, 2012
  25. Koo HJ, Kim YJ, Lee YH, Lee WI, Kim K, Park NG, Adv. Mater., 20(1), 195, 2008
  26. Yun J, Hwang SH, Jang J, ACS Appl. Mater. Interfaces, 7, 2055, 2015