Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 425-439, 2017
Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures
The main objective of this study was to develop soft computing approaches for prediction of physicochemical properties of IL mixtures including: density, heat capacity, thermal conductivity, and surface tension. The proposed models in this study are based on support vector machine (SVM), least square support vector machines (LSSVM), and group method of data handling type polynomial neural network (GMDH-PNN) systems. To find the LSSVM and SVM adjustable parameters, genetic algorithm (GA) as a meta-heuristic algorithm was utilized. The results showed that LSSVM is more robust and reliable for prediction of physicochemical properties of IL mixtures. The proposed GALSSVM model provides average absolute relative deviations of 0.38%, 0.18%, 0.77% and 1.18% for density, heat capacity, thermal conductivity, and surface tension, respectively, which demonstrates high accuracy of the model for prediction of physicochemical properties of IL mixtures.
[References]
  1. Mokhtarani B, Mojtahedi MM, Mortaheb HR, Mafi M, Yazdani F, Sadeghian F, J. Chem. Eng. Data, 53(3), 677, 2008
  2. Atashrouz S, Mozaffarian M, Pazuki G, Ind. Eng. Chem. Res., 54(34), 8600, 2015
  3. Park BH, Korean J. Chem. Eng., 33(7), 2191, 2016
  4. Gonzalez B, Calvar N, Gomez E, Dominguez I, Dominguez A, J. Chem. Eng. Data, 54(4), 1353, 2009
  5. Wu TY, Chen BK, Hao L, Lin KF, Sun IW, J. Taiwan Inst. Chem. Eng., 42, 914, 2011
  6. Atashrouz S, Zarghampour M, Abdolrahimi S, Pazuki G, Nasernejad B, J. Chem. Eng. Data, 59(11), 3691, 2014
  7. Huang Y, Zhang X, Zhao Y, Zeng S, Dong H, Zhang S, Phys. Chem. Chem. Phys., 17, 26918, 2015
  8. Marsh KN, Boxall JA, Lichtenthaler R, Fluid Phase Equilib., 219(1), 93, 2004
  9. Heintz A, J. Chem. Thermodyn., 37(6), 525, 2005
  10. Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T, Chem. Soc. Rev., 41, 7780, 2012
  11. Alvarez VH, Mattedi S, Martin-Pastor M, Aznar M, Iglesias M, J. Chem. Thermodyn., 43(7), 997, 2011
  12. Hosseini SM, Moghadasi J, Papari MM, Nobandegani FF, Ind. Eng. Chem. Res., 51, 758, 2012
  13. Yousefi F, Ionics, 18, 769, 2012
  14. Andreatta AE, Rodil E, Arce A, Soto A, J. Solution Chem., 43, 404, 2014
  15. Lin PY, Soriano AN, Leron RB, Li MH, Exp. Therm. Fluid Sci., 35, 1107, 2011
  16. Gonzalez EJ, Gonzalez B, Calvar N, Dominguez A, J. Chem. Eng. Data, 52(5), 1641, 2007
  17. Gonzalez B, Calvar N, Gomez E, Dominguez A, J. Chem. Thermodyn., 40(8), 1274, 2008
  18. Mohagheghian E, Zafarian-Rigaki H, Motamedi-Ghahfarrokhi Y, Hemmati-Sarapardeh A, Korean J. Chem. Eng., 32(10), 2087, 2015
  19. Babaei AA, Khataee A, Ahmadpour E, Sheydaei M, Kakavandi B, Alaee Z, Korean J. Chem. Eng., 33(4), 1352, 2016
  20. Ammi Y, Khaouane L, Hanini S, Korean J. Chem. Eng., 32(11), 2300, 2015
  21. Satya EJ, Chandrakar N, Korean J. Chem. Eng., 33(4), 1318, 2016
  22. Atashrouz S, Mirshekar H, Bulg. Chem. Commun., 46, 104, 2014
  23. Atashrouz S, Pazuki G, Alimoradi Y, Fluid Phase Equilib., 372, 43, 2014
  24. Hashemkhani M, Soleimani R, Fazeli H, Lee M, Bahadori A, Tavalaeian M, J. Mol. Liq., 211, 534, 2015
  25. Hemmati-Sarapardeh A, Aminshahidy B, Pajouhandeh A, Yousefi SH, Hosseini-Kaldozakh SA, J. Taiwan Inst. Chem. Eng., 59, 1, 2016
  26. Vong CM, Wong PK, Li YP, Eng. Appl. Artif. Intell., 19, 277, 2006
  27. Hemmati-Sarapardeh A, Alipour-Yeganeh-Marand R, Naseri A, Safiabadi A, Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH, Fluid Phase Equilib., 354, 177, 2013
  28. Eslamimanesh A, Gharagheizi F, Illbeigi M, Mohammadi AH, Fazlali A, Richon D, Fluid Phase Equilib., 316, 34, 2012
  29. Hosseinzadeh M, Hemmati-Sarapardeh A, J. Mol. Liq., 200, 340, 2014
  30. Ivakhnenko AG, Sov. Autom. Control., 13, 43, 1968
  31. Ivakhnenko AG, IEEE Trans. Syst. Man. Cybern., 364, 1971
  32. Reyhani SZ, Ghanadzadeh H, Puigjaner L, Recances F, Ind. Eng. Chem. Res., 48(4), 2129, 2009
  33. Atashrouz S, Pazuki G, Kakhki SS, J. Mol. Liq., 202, 95, 2015
  34. Atashrouz S, Amini E, Pazuki G, Ionics (Kiel), 21, 1595, 2014
  35. Vapnik VN, Statistical Learning Theory, Wiley (1998).
  36. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Least Squares Support Vector Machines, World Scientific (2002).
  37. Suykens J, Vandewalle J, Neural Process Lett., 9, 293, 1999
  38. Haupt RL, Haupt SE, Practical genetic algorithms, Wiley (2004).
  39. Tahboub KK, Barghash M, Arafeh M, Ghazal O, Math. Probl. Eng., 2016, 1, 2016
  40. Karimi H, Yousefi F, Rahimi MR, Heat Mass Transf., 47, 1417, 2011
  41. Atashrouz S, Mozaffarian M, Pazuki G, Korean J. Chem. Eng., Accepted Manuscript (2016), DOI:10.1007/s11814-016-0169-4., 2016
  42. Ge R, Hardacre C, Nancarrow P, Rooney DW, J. Chem. Eng. Data, 52(5), 1819, 2007
  43. Tariq M, Freire MG, Saramago B, Coutinho JAP, Lopes JNC, Rebelo LPN, Chem. Soc. Rev., 41, 829, 2012
  44. Navia P, Troncoso J, Romani L, J. Chem. Eng. Data, 52(4), 1369, 2007
  45. Ning H, Hou M, Mei Q, Liu Y, Yang D, Han B, Sci. China Chem., DOI:10.1007/s11426-012-4655-1., 55, 1509, 2012
  46. Bahadur I, Deenadayalu N, Tywabi Z, Sen S, Hofman T, J. Chem. Thermodyn., 49, 24, 2012
  47. Pereiro AB, Rodriguez A, J. Chem. Eng. Data, 52(2), 600, 2007
  48. Singh S, Bahadur I, Redhi GG, Ebenso EE, Ramjugernath D, J. Chem. Thermodyn., 89, 104, 2015
  49. Singh S, Bahadur I, Redhi GG, Ebenso EE, Ramjugernath D, J. Mol. Liq., 199, 518, 2014
  50. Wang SL, Jacquemin J, Husson P, Hardacre C, Gomes MFC, J. Chem. Thermodyn., 41(11), 1206, 2009
  51. Singh S, Bahadur I, Redhi GG, Ramjugernath D, Ebenso EE, J. Mol. Liq., 200, 160, 2014
  52. Pereiro AB, Tojo E, Rodriguez A, Canosa J, Tojo J, J. Chem. Thermodyn., 38(6), 651, 2006
  53. Rilo E, Pico J, Garcia-Garabal S, Varela LM, Cabeza O, Fluid Phase Equilib., 285(1-2), 83, 2009
  54. Gomez E, Gonzalez B, Calvar N, Dominguez A, J. Chem. Thermodyn., 40(8), 1208, 2008
  55. Rodriguez H, Brennecke JF, J. Chem. Eng. Data, 51(6), 2145, 2006
  56. Tian Y, Wang XF, Wang JJ, J. Chem. Eng. Data, 53(9), 2056, 2008
  57. Pereiro AB, Rodriguez A, Phys. Chem. Liq., 46, 172, 2008
  58. Gomez E, Gonzalez B, Dominguez A, Tojo E, Tojo J, J. Chem. Eng. Data, 51(2), 696, 2006
  59. Tekin A, Safarov J, Shahverdiyev A, Hassel E, J. Chem. Eng. Data, 136, 177, 2007
  60. Garcia-Miaja G, Troncoso J, Romani L, J. Chem. Eng. Data, DOI:10.1021/je7002836., 52(6), 2261, 2007
  61. Waliszewski D, Piekarski H, J. Chem. Thermodyn., 42(2), 189, 2010
  62. Waliszewski D, J. Chem. Thermodyn., 40(2), 203, 2008
  63. Yu YH, Soriano AN, Li MH, J. Taiwan Inst. Chem. Eng., 40, 205, 2009
  64. Lin PY, Soriano AN, Caparanga AR, Li MH, Thermochim. Acta, 496(1-2), 105, 2009
  65. Yu YH, Soriano AN, Li MH, Thermochim. Acta, 482(1-2), 42, 2009
  66. Chen W, Qiu L, Liang SQ, Zheng XH, Tang DW, Thermochim. Acta, 560, 1, 2013
  67. Wandschneider A, Lehmann JK, Heintz A, J. Chem. Eng. Data, 53(2), 596, 2008
  68. Geppert-Rybczynska M, Lehmann JK, Heintz A, J. Chem. Eng. Data, 56(4), 1443, 2011
  69. Geppert-Rybczynska M, Lehmann JK, Safarov J, Heintz A, J. Chem. Thermodyn., 62, 104, 2013
  70. Rilo E, Dominguez-Perez M, Vila J, Varela LM, Cabeza O, J. Chem. Thermodyn., 49, 165, 2012
  71. Domanska U, Pobudkowska A, Rogalski M, J. Colloid Interface Sci., 322(1), 342, 2008
  72. Wang JY, Zhao FY, Liu YM, Wang XL, Hu YQ, Fluid Phase Equilib., 305(2), 114, 2011
  73. Russo JW, Hoffmann MM, J. Chem. Eng. Data, 56(9), 3703, 2011
  74. Torrecilla JS, Rafione T, Garcia J, Rodriguez F, J. Chem. Eng. Data, 53(4), 923, 2008
  75. Tong J, Hong M, Chen Y, Wang H, Guan W, Yang JZ, J. Chem. Thermodyn., 54, 352, 2012
  76. Wang JY, Zhang XJ, Hu YQ, Qi GD, Liang LY, J. Chem. Thermodyn., 45(1), 43, 2012
  77. Almeida HFD, Lopes-da-Silva JA, Freire MG, Coutinho JAP, J. Chem. Thermodyn., 57, 372, 2013