Issue
Korean Journal of Chemical Engineering,
Vol.34, No.2, 366-375, 2017
Carbonization and CO2 activation of scrap tires: Optimization of specific surface area by the Taguchi method
This research demonstrates the production of activated carbon from scrap tires via physical activation with carbon dioxide. A newly constructed apparatus was utilized for uninterrupted carbonization and activation processes. Taguchi experimental design (L16) was applied to conduct the experiments at different levels by altering six operating parameters. Carbonization temperature (550-700 °C), activation temperature (800-950 °C), process duration (30-120 min), CO2 flow rate (400 and 600 cc/min) and heating rate (5 and 10 °C/min) were the variables examined in this study. The effect of parameters on the specific surface area (SSA) of activated carbon was studied, and the influential parameters were identified employing analysis of variance (ANOVA). The optimum conditions for maximum SSA were: carbonization temperature=650 °C, carbonization time=60min, heating rate=5 °C/min, activation temperature=900 °C, activation time=60min and CO2 flow rate=400 cc/min. The most effective parameter was activation temperature with an estimated impact of 49%. The activated carbon produced under optimum conditions was characterized by pore and surface structure analysis, iodine adsorption test, ash content, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The process yield for optimized activated carbon was 13.2% with the following properties: specific surface area=437m2/g, total pore volume=0.353 cc/g, iodine number=404.7mg/g and ash content=13.9% along with an amorphous structure and a lot of oxygen functional groups. These properties are comparable to those of commercial activated carbons.
[References]
  1. Martinez JD, Puy N, Murillo R, Garcia T, Navarro MV, Mastral AM, Renew. Sust. Energ. Rev., 23, 179, 2013
  2. Managing end-of-life-tires-full report, World Business Council for Sustainable Development (November 2008).
  3. Parthasarathy P, Choi HS, Park HC, Hwang JG, Yoo HS, Lee BK, Upadhyay M, Korean J. Chem. Eng., 33(8), 2268, 2016
  4. Onay O, Koca H, Fuel, 150, 169, 2015
  5. Commission E, Landfill of waste directive, council directive 1999/31/ec, European Commission, Brussels (1999).
  6. Pipilikaki P, Katsioti M, Papageorgiou D, Fragoulis D, Chaniotakis E, Cement Concrete Res., 27, 843, 2005
  7. Mui EL, Ko DC, McKay G, Carbon, 42, 2789, 2004
  8. Conesa JA, Galvez A, Mateos F, Martin-Gullon I, Font R, J. Hazard. Mater., 158(2-3), 585, 2008
  9. Carrasco F, Gningue Y, Heitz M, Environ. Technol., 19, 461, 1998
  10. Benazzouk A, Douzane O, Langlet T, Mezreb K, Roucoult JM, Queneudec M, Cement Concrete Comp., 29, 732, 2007
  11. Arabani M, Mirabdolazimi SM, Sasani AR, Constr. Build. Mater., 24, 1060, 2010
  12. Navarro FJ, Partal P, Rancisco F, Martinez-Boza J, Gallegos C, Polym. Test, 29, 588, 2010
  13. Fernandez AM, Barriocanal C, Alvarez R, J. Hazard. Mater., 203, 236, 2012
  14. Betancur M, Martinez JD, Murillo R, J. Hazard. Mater., 168(2-3), 882, 2009
  15. Chan O, Cheung W, McKay G, Carbon, 49, 4674, 2011
  16. Alsaleh A, Sattler ML, Curr. Sust./Renewe. Energy Rep., 1, 129, 2014
  17. Saleh TA, Gupta VK, Adv. Colloid Interface Sci., 211, 93, 2014
  18. Acevedo B, Barriocanal C, Fuel Process. Technol., 134, 275, 2015
  19. Acevedo B, Barriocanal C, Lupul I, Gryglewicz G, Fuel, 151, 83, 2015
  20. Acosta R, Tavera C, Gauthier-Maradei P, Nabarlatz D, Int. J. Chem. React. Eng., 13, 189, 2015
  21. Betancur M, Martinez JD, Murillo R, J. Hazard. Mater., 168(2-3), 882, 2009
  22. Ngernyen Y, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 23(6), 1046, 2006
  23. Wu G, Jeong TS, Won CH, Cui L, Korean J. Chem. Eng., 27(5), 1476, 2010
  24. Parthasarathy P, Narayanan S, Korean J. Chem. Eng., 32(11), 2236, 2015
  25. Kang HY, Park SS, Rim YS, Korean J. Chem. Eng., 23(6), 948, 2006
  26. Dias JM, Alvim-Ferraz M, Almeida MF, Rivera-Utrilla J, Sanchez-Polo M, J. Environ. Manage., 85, 833, 2007
  27. Su CI, Zeng ZL, Peng CC, Lu CH, Fiber. Polym., 13, 21, 2012
  28. Ekrami E, Dadashian F, Soleimani M, Fiber. Polym., 15, 1855, 2014
  29. Esfandiari A, Kaghazchi T, Soleimani M, J. Taiwan Inst. Chem. Eng., 43, 631, 2012
  30. Mui ELK, Cheung WH, Valix M, McKay G, Microporous Mesoporous Mater., 130, 287, 2010
  31. Gupta BGVK, Rastogi A, Agarwal S, Nayak A, J. Hazard. Mater., 186, 891, 2001
  32. San Miguel G, Fowler GD, Dall'Orso M, Sollars CJ, J. Chem. Technol. Biotechnol., 77(1), 1, 2002
  33. Helleur R, Popovic N, Ikura M, Stanciulescu M, Liu D, J. Anal. Appl. Pyrolysis, 58, 813, 2001
  34. Alexandre-Franco M, Fernandez-Gonzalez C, Macias-Garcia A, Gomez-Serrano V, Adsorption, 14, 591, 2008
  35. Skodras G, Diamantopouiou I, Zabaniotou A, Stavropoulos G, Sakellaropoulos GP, Fuel Process. Technol., 88(8), 749, 2007
  36. Li L, Liu S, Zhu T, Zhu T, J. Environ. Sci., 22, 1273, 2010
  37. Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M, Environ. Sci. Pollut. Res., 21, 684, 2014
  38. Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A, Water Res., 45, 4047, 2011
  39. Hofman M, Pietrzak R, Chem. Eng. J., 170(1), 202, 2011
  40. Brady TA, RostamAbadi M, Rood MJ, Gas Sep. Purif., 10(2), 97, 1996
  41. Ali I, Sep. Purif. Rev., 43, 175, 2014
  42. Ali I, Sep. Purif. Rev., 39, 95, 2010
  43. Ali I, Asim M, Khan TA, J. Environ. Manage., 113, 170, 2012
  44. Ali I, Chem. Rev., 112(10), 5073, 2012
  45. Montgomery DC, Design and analysis of experiments, John Wiley & Sons (2008).
  46. Bansal RC, Goyal M, Activated carbon adsorption, CRC Press (2010).
  47. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  48. Barrett P, Joyner L, Halenda PP, J. Am. Chem. Soc., 73, 373, 1951
  49. Saka C, J. Anal. Appl. Pyrolysis, 95, 21, 2012
  50. ASTM, Standard test method for apparent density of activated carbon, D2854-96, The American Society for Testing and Materials (2004).
  51. ASTM, Standard test method for pH of activated carbon, The American Society for Testing and Materials (2000).
  52. ASTM, Standard test method for total ash content of activated carbon, The American Society for Testing and Materials (2004).
  53. Ahmedna M, Marshall WE, Rao RM, Bioresour. Technol., 71(2), 113, 2000
  54. Loloie Z, Soleimani M, Mozaffarian M, Optimisation of physical activation process for activated carbon production from tyre wastes, Int. J. of Global Warm., Inderscience Enterprises Ltd. (2015).
  55. Gonzalez JF, Encinar JM, Gonzalez-Garcia CM, Sabio E, Ramiro A, Canito JL, Ganan J, Appl. Surf. Sci., 252(17), 5999, 2006
  56. Suuberg EM, Aarna I, Carbon, 45, 1719, 2007
  57. Choi GG, Jung SH, Oh SJ, Kim JS, Fuel Process. Technol., 123, 57, 2014
  58. Sing KS, Pure Appl. Chem., 57, 603, 1985
  59. Zhu J, Liang H, Fang J, Zhu J, Shi B, Clean Soil Air Water, 39, 557, 2011