Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 249-258, 2017
Esterification of propionic acid with isopropyl alcohol over ion exchange resins: Optimization and kinetics
The esterification of propionic acid with isopropyl alcohol was studied in an isothermal batch reactor. The activities of three different types of ion exchange resin catalysts (Amberlyst 15, Amberlyst 70 and Dowex 50 WX8) were investigated, and Amberlyst 15 was found to be an effective catalyst for the reaction. The effects of process parameters, namely, catalyst loading, alcohol to acid molar ratio and reaction temperature, were studied and optimized. Response surface methodology (RSM) was applied to optimize the process parameters as well as to investigate the interaction between process parameters. The internal and external diffusion limitations were found to be absent at a stirring speed of 500 rpm. The RSM model predicted response (83.26%) was verified experimentally with a good agreement of experimental value (83.62±0.39%). Moreover, the kinetics was studied and the Langmuir-Hinshelwood model was used to fit the kinetic data.
[References]
  1. Erdem B, Cebe M, Korean J. Chem. Eng., 23(6), 896, 2006
  2. Sharma M, Wanchoo RK, Toor AP, Ind. Eng. Chem. Res., 53(6), 2167, 2014
  3. Ali SH, Int. J. Chem. Kinet., 41, 432, 2009
  4. Lilja J, Aumo J, Salmi T, Murzin DY, Maki-Arvela P, Sundell M, Ekman K, Peltonen R, Vainio H, Appl. Catal. A: Gen., 228(1-2), 253, 2002
  5. Ma L, Han Y, Sun K, Lu J, Ding J, J. Energy Chem., 24, 456, 2015
  6. Peters TA, Benes NE, Holmen A, Keurentjes JTF, Appl. Catal. A: Gen., 297(2), 182, 2006
  7. Leyva F, Orjuela A, Miller DJ, Gil I, Vargas J, Rodriguez G, Ind. Eng. Chem. Res., 52(51), 18153, 2013
  8. Tejero MA, Ramirez E, Fite C, Tejero J, Cunill F, Appl. Catal. A: Gen., 517, 56, 2016
  9. Ilgen O, Fuel Process. Technol., 124, 134, 2014
  10. JagadeeshBabu PE, Sandesh K, Saidutta MB, Ind. Eng. Chem. Res., 50(12), 7155, 2011
  11. Teo HTR, Saha B, J. Catal., 228(1), 174, 2004
  12. Orjuela A, Yanez AJ, Santhanakrishnan A, Lira CT, Miller DJ, Chem. Eng. J., 188, 98, 2012
  13. Tsai YT, Lin HM, Lee MJ, J. Taiwan Inst. Chem. Eng., 42, 271, 2011
  14. Schmid B, Doker M, Gmehling J, Ind. Eng. Chem. Res., 47(3), 698, 2008
  15. Altiokka MR, Odes E, Appl. Catal. A: Gen., 362(1-2), 115, 2009
  16. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J, Ind. Eng. Chem. Res., 41(3), 512, 2002
  17. Ali SH, Tarakmah A, Merchant SQ, Al-Sahhaf T, Chem. Eng. Sci., 62(12), 3197, 2007
  18. Osorio-Viana W, Duque-Bernal M, Fontalvo J, Dobrosz-Gomez I, Gomez-Garcia MA, Chem. Eng. Sci., 101, 755, 2013
  19. Altiokka MR, Citak A, Appl. Catal. A: Gen., 239(1-2), 141, 2003
  20. Izci A, Bodur F, React. Funct. Polym., 67(12), 1458, 2007
  21. Fauzi AHM, Amin NAS, Energy Conv. Manag., 76, 818, 2013
  22. de Jong MC, Feijt R, Zondervan E, Nijhuis TA, de Haan AB, Appl. Catal. A: Gen., 365(1), 141, 2009
  23. Mao W, Wang XL, Wang H, Chang HY, Zhang XW, Han J, Chem. Eng. Process., 47(5), 761, 2008
  24. Fogler HS, Elements of Chemical Reaction Engineering, Prentice-Hall, Upper Saddle River, New Jersey, U.S.A. (1999).
  25. Yadav GD, Murkute AD, Int. J. Chem. React. Eng., 1, 1, 2003
  26. Delgado P, Sanz MT, Beltran S, Chem. Eng. J., 126(2-3), 111, 2007
  27. Yin P, Chen L, Wang Z, Qu RJ, Liu XG, Xu Q, Ren SH, Fuel, 102, 499, 2012
  28. Su CH, Bioresour. Technol., 130, 522, 2013
  29. Xu ZP, Chuang KT, Can. J. Chem. Eng., 74(4), 493, 1996
  30. Kolah AK, Asthana NS, Vu DT, Lira CT, Miller DJ, Ind. Eng. Chem. Res., 47(15), 5313, 2008