Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 199-205, 2017
Parametric studies for CO2 reforming of methane in a membrane reactor as a new CO2 utilization process
A one-dimensional reactor model was employed to perform parametric studies for CO2 reforming of methane in a membrane reactor to investigate its feasibility as a new CO2 utilization process. The effect of key variables such as hydrogen permeance and Ar sweep gas flow rate to facilitate H2 transport from a shell side (retentate) to a tube side (permeate) on the performance in a membrane reactor was studied at various temperatures with numerical simulation validated by experimental results. In addition, increase in CH4 conversion and H2 yield enhancement observed in membrane reactor was successfully confirmed by profiles of H2 partial pressure difference between shell and tube sides. From the numerical simulation studies, the feasibility of using a membrane reactor for CO2 reforming of methane was confirmed by increased CH4 conversion and H2 yield enhancement compared to a packed-bed reactor at the same condition, which in turn leads to significant cost reductions due to a reduced operating temperature. Moreover, a window of H2 permeance and a guideline for Ar sweep gas flow rate for the efficient membrane reactor design was obtained from this study.
[References]
  1. Thomas JM, Thomas WJ, Heterogeneous catalysis, VCH, Weinheim (1997).
  2. Seong M, Shin M, Cho JH, Lee YC, Park YK, Jeon JK, Korean J. Chem. Eng., 31(3), 412, 2014
  3. Lee HJ, Shin GS, Kim YC, Korean J. Chem. Eng., 32(7), 1267, 2015
  4. Marcano JGS, Tsotsis TT, Catalytic membranes and membrane reactors, WILEY-VCH, Weinheim (2002).
  5. Lee D, Hacarlioglu P, Oyama ST, Top. Catal., 29, 45, 2004
  6. Irusta S, Munera J, Carrara C, Lombardo EA, Cornaglia LM, Appl. Catal. A: Gen., 287(2), 147, 2005
  7. Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M, AIChE J., 50(11), 2794, 2004
  8. Hacarlioglu P, Gu Y, Oyama ST, J. Nat. Gas Chem., 15, 73, 2006
  9. Tong JH, Matsumura Y, Appl. Catal. A: Gen., 286(2), 226, 2005
  10. Patil CS, Annaland MVS, Kuipers JAM, Chem. Eng. Sci., 62(11), 2989, 2007
  11. Kikuchi E, Kawabe S, Matsukata M, J. Jpn. Pet. Inst., 46, 93, 2003
  12. Lee DW, Nam SE, Sea B, Ihm SK, Lee KH, Catal. Today, 118(1-2), 198, 2006
  13. Basile A, Gallucci F, Paturzo L, Catal. Today, 104(2-4), 244, 2005
  14. Lim H, Gu YF, Oyama ST, J. Membr. Sci., 351(1-2), 149, 2010
  15. Tosti S, Basile A, Borgognoni F, Capaldo V, Cordiner S, Di Cave S, Gallucci F, Rizzello C, Santucci A, Traversa E, J. Membr. Sci., 308(1-2), 250, 2008
  16. Vasileiadis S, Ziaka Z, Tsimpa M, Int. Trans. J. Eng. Manag. Sci. Technol., 2, 129, 2011
  17. Vasileiadis S, Ziaka-Vasileiadou Z, Chem. Eng. Sci., 59(22-23), 4853, 2004
  18. Ziaka Z, Membrane reactors for fuel cells and environmental energy systems, Xlibris, USA (2009).
  19. Vasileiadis S, Ziaka Z, J. Nano Res., 12, 105, 2010
  20. Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V, Chem. Eng. J., 93(1), 23, 2003
  21. Basile A, Chiappetta G, Tosti S, Violante V, Sep. Purif. Technol., 25(1-3), 549, 2001
  22. Brunetti A, Barbieri G, Drioli E, Lee KH, Sea B, Lee DW, Chem. Eng. Process., 46(2), 119, 2007
  23. Brunetti A, Caravella A, Barbieri G, Drioli E, J. Membr. Sci., 306(1-2), 329, 2007
  24. Barbieri G, Brunetti A, Tricoli G, Drioli E, J. Power Sources, 182(1), 160, 2008
  25. Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Mendes A, Madeira LM, Int. J. Hydrog. Energy, 35(22), 12596, 2010
  26. Mendes D, Sa S, Tosti S, Sousa JM, Madeira LM, Mendes A, Chem. Eng. Sci., 66(11), 2356, 2011
  27. Zhang YT, Wu ZJ, Hong Z, Gu XH, Xu NP, Chem. Eng. J., 197, 314, 2012
  28. Cornaglia CA, Tosti S, Sansovini M, Munera J, Lombardo EA, Appl. Catal. A: Gen., 462-463, 278, 2013
  29. Cornaglia CA, Adrover ME, Munera JF, Pedernera MN, Borio DO, Lombardo EA, Int. J. Hydrog. Energy, 38(25), 10485, 2013
  30. Lim H, Korean J. Chem. Eng., 32(8), 1522, 2015
  31. Majidian N, Habibi N, Rezaei M, Korean J. Chem. Eng., 31(7), 1162, 2014
  32. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Allahyari S, Korean J. Chem. Eng., 31(9), 1553, 2014
  33. Prabhu AK, Oyama ST, J. Membr. Sci., 176(2), 233, 2000
  34. Prabhu AK, Liu A, Lovell LG, Oyama ST, J. Membr. Sci., 177(1-2), 83, 2000
  35. Gallucci F, Tosti S, Basile A, J. Membr. Sci., 317(1-2), 96, 2008
  36. Bosko ML, Munera JF, Lombardo EA, Cornaglia LM, J. Membr. Sci., 364(1-2), 17, 2010
  37. Li JL, Yoon H, Wachsman ED, Int. J. Hydrog. Energy, 37(24), 19125, 2012
  38. Garcia-Garcia FR, Soria MA, Mateos-Pedrero C, Guerrero-Ruiz A, Rodriguez-Ramos I, Li K, J. Membr. Sci., 435, 218, 2013
  39. Munera J, Faroldi B, Frutis E, Lombardo E, Cornaglia L, Carrazan SG, Appl. Catal. A: Gen., 474, 114, 2014
  40. Sumrunronnasak S, Tantayanon S, Kiatgamolchai S, Sukonket T, Int. J. Hydrog. Energy, 41(4), 2621, 2016
  41. Oyama ST, Lim H, Chem. Eng. J., 151(1-3), 351, 2009
  42. Lim H, Clean Technol., 20(4), 425, 2014
  43. Alamdari A, J. Nat. Gas Sci. Eng., 27, 934, 2015
  44. Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293, 1990
  45. Fogler HS, Essentials of Chemical Reaction Engineering, Pearson Education, Inc., New Jersey (2010).