Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 179-188, 2017
Thermodynamics and kinetics study of defluoridation using Ca-SiO2-TiO2 as adsorbent: Column studies and statistical approach
Fluoride contamination of water is a potential health and environmental hazard worldwide. This study focuses on defluoridation efficiency in aqueous system by novel adsorbents, i.e., calcium impregnated silica (Ca-SiO2) and calcium impregnated silica combined with titanium dioxide (Ca-SiO2-TiO2). Comparative batch study was carried out using both adsorbents Ca-SiO2 and Ca-SiO2-TiO2 for fluoride removal efficiency in different experimental conditions where it was observed that chemically modified Ca-SiO2-TiO2 acted as a better adsorbent for defluoridation than Ca-SiO2. Thus, further batch isotherm and kinetics studies were performed using Ca-SiO2-TiO2. The phenomenon of fluoride ion uptake is realized by Langmuir and Freundlich isotherm model. Langmuir isotherm shows satisfactory fit to the experimental data. The rate of adsorption shows that the pseudo-second-order rate fitted the adsorption kinetics better than the pseudo-first-order rate equation. The mechanism of adsorption process was illustrated by calculating Gibbs free energy, enthalpy and entropy from thermodynamic studies. To further confirm the applicability of the adsorbent, a fixed bed study was carried out in column mode. Thomas and bed-depth-service-time (BDST) model were well-fitted to the experimental results. The optimal operating conditions of defluoridation were found by using response surface methodology (RSM) with the help of Design Expert Software. The maximum percentage of fluoride removal was 92.41% in case of calcium impregnated silica combined with titanium dioxide (Ca-SiO2-TiO2). Thus, it may be concluded that chemically synthesized Ca-SiO2-TiO2 could be used as an environmentally and economically safe adsorbent for defluoridation of waste water.
[References]
  1. Sujana MG, Pradhan HK, Anand S, J. Hazard. Mater., 161(1), 120, 2009
  2. WHO, Guidelines for Drinking Water Quality, 3rd Ed., Geneva (2004).
  3. Chinoy NJ, Indian J. Environ. Toxicol., 1, 17, 1991
  4. Chen N, Zhang ZY, Feng CP, Li MA, Zhu DR, Sugiura N, Mater. Chem. Phys., 125(1-2), 293, 2011
  5. Das N, Pattanaik P, Das R, J. Colloid Interface Sci., 292(1), 1, 2005
  6. Tripathy SS, Bersillon JL, Gopal K, Sep. Purif. Technol., 50(3), 310, 2006
  7. Camacho LM, Torres A, Saha D, Deng SG, J. Colloid Interface Sci., 349(1), 307, 2010
  8. Mohan D, Singh KR, Singh VK, J. Hazard. Mater., 152(3), 1045, 2008
  9. Alagumuthu G, Rajan M, Hem. Ind., 64, 295, 2010
  10. Alagumuthu G, Veeraputhiran V, Venkataraman R, Hem. Ind., 65, 23, 2011
  11. LiuZheng Y, Wang A, Ads. Sci. Technol., 28(10), 913, 2010
  12. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A, Appl. Surf. Sci., 258(10), 4402, 2012
  13. Hernandez-Montoyaa V, Ramirez-Montoya LA, Bonilla-Petriciolet A, Montes-Moranb MA, Biochem. Eng. J., 62, 1, 2012
  14. Bas D, Boyaci IH, J. Food Eng., 78(3), 836, 2007
  15. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA, Talanta, 76, 965, 2008
  16. Arslan-Alaton I, Tureliamd G, Olmez-Hanci T, J. Photochem. Photobiol. A-Chem., 202, 142, 2009
  17. Thirugnanasambandham K, Sivakumar V, Maran JP, Kandasamy S, J. Korean Chem. Soc., 57, 761, 2013
  18. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P, J. Environ. Manage., 91, 67, 2009
  19. Bhatnagar A, Kumar E, Sillanpaa M, Chem. Eng. J., 171(3), 811, 2011
  20. Dabrowski A, Adv. Colloid Interface Sci., 93, 135, 2001
  21. Zabova H, Sobek J, Cirkva V, Solcova O, Hajek M, J. Solid State Chem., 182(12), 3387, 2009
  22. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  23. Freundlich H, Z. Phys. Chem., 57, 384, 1906
  24. Rozada F, Otero M, Garcia AI, Moran A, Dyes Pigment., 72, 47, 2007
  25. Jain M, Garg VK, Kadirvelu K, Bioresour. Technol., 102(2), 600, 2011
  26. Amini M, Younesi H, Bahramifar N, Lorestani AAA, Ghorbani F, Daneshi A, Sharifzadeh M, J. Hazard. Mater., 54, 694, 2008
  27. Webi TW, Chakravort RK, AIChE J., 20, 228, 1974
  28. Ghorai S, Pant KK, Sep. Purif. Technol., 42(3), 265, 2005
  29. Vijaya Y, Popuri SR, Reddy AS, Krishnaiah A, J. Appl. Polym. Sci., 120(6), 3443, 2011
  30. Vijaya Y, Krishnaiah A, E-J. Chem., 6, 713, 2009
  31. Thakre D, Jagtap S, Sakhare N, Labhsetwar N, Meshram S, Rayalu S, Chem. Eng. J., 158(2), 315, 2010
  32. Liao XP, Shi B, Environ. Sci. Technol., 39, 4628, 2005
  33. Teutli-Sequeira A, Solache-Rios M, Martinez-Miranda V, Linares-Hernandez I, J. Colloid Interface Sci., 418, 254, 2014
  34. Swain SK, Patnaik T, Patnaik PC, Jha U, Dey RK, Chem. Eng. J., 215-216, 763, 2013
  35. Zhang ZJ, Tan Y, Zhong MF, Desalination, 276(1-3), 246, 2011
  36. Zhao B, Zhang Y, Dou X, Wu X, Yang M, Chem. Eng. J., 185-186, 211, 2012
  37. Babaeivelni K, Khodadoust AP, J. Colloid Interface Sci., 394, 419, 2013
  38. Koilraj P, Kannan S, Chem. Eng. J., 234, 406, 2013
  39. Swain SK, Patnaik T, Singh VK, Jha U, Patel RK, Dey RK, Chem. Eng. J., 171(3), 1218, 2011