Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 118-126, 2017
Kinetics of growth on dual substrates, production of novel glutaminase-free L-asparaginase and substrates utilization by Pectobacterium carotovorum MTCC 1428 in a batch bioreactor
Bacterial L-asparaginase has been widely used as a potential therapeutic agent in the treatment of various lymphoblastic leukemia diseases. We studied product and dual substrates utilization kinetics by P. carotovorum MTCC 1428 in batch bioreactor. The kinetic study revealed that the maximum growth of P. carotovorum MTCC 1428 was achieved at 2 g l-1 and 5 g l-1 of glucose and L-asparagine, respectively. Different substrate inhibition models were fitted to the growth kinetic data and the additive form of double Luong model was found to best explain the growth kinetics of P. carotovorum MTCC 1428. The kinetic parameters of growth studies showed that the predicted maximum inhibition concentration of glucose (Smg) and L-asparagine (Sma) was close to the experimentally observed value 15.0 and 10 gl-1, respectively. Modified form of the Luedeking-Piret model was used to describe the kinetics of L-asparaginase production, and the system seems to be mixed growth associated. Kinetic models of dual substrate growth, L-asparaginase production and substrate(s) utilization by P. carotovorum MTCC 1428 well fitted with experimental data with regression coefficients (R2) value of 0.97, 0.96 and 0.93, respectively.
[References]
  1. Athale UH, Chan AKC, Thromb. Res., 111, 199, 2003
  2. Kotzia GA, Labrou NE, J. Biotechnol., 127, 657, 2007
  3. Pedreschi F, Kaack K, Granby K, Food Chem., 109, 386, 2008
  4. Teodor E, Litescu SC, Lazar V, Somoghi R, J. Mater. Sci. -Mater. Med., 20, 1307, 2009
  5. Verma N, Kumar K, Kaur G, Anand S, Artif. Cells. Blood Substit. Immobil. Biotechnol., 35, 449, 2007
  6. Narta UK, Kanwar SS, Azmi W, Crit. Rev. Oncol. Hematol., 61, 208, 2007
  7. Wriston JC, Yellin TO, Adv. Enzymol. Relat. Areas Mol. Biol., 39, 185, 1973
  8. Krasotkina J, Borisova AA, Gervaziev YV, Sokolov NN, Biotechnol. Appl. Biochem., 39, 215, 2004
  9. Muller HJ, Boos J, Crit. Rev. Oncol. Hematol., 28, 97, 1998
  10. Distasio JA, Salazar AM, Nadji M, Durden DL, Int. J. Cancer, 30, 343, 1982
  11. Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB, Weinstein JN, Blood, 123, 3596, 2014
  12. Zinn M, Witholt B, Egli T, J. Biotechnol., 113, 263, 2004
  13. Kumar S, Pakshirajan K, Dasu VV, Appl. Microbiol. Biotechnol., 84(3), 477, 2009
  14. Kumar S, Dasu VV, Pakshirajan K, Process Biochem., 45(2), 223, 2010
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 193, 265, 1951
  16. Haynes PA, Sheumack D, Greig LG, Kibby J, Redmond JW, J. Chromatogr. A, 588, 107, 1991
  17. “Biochemical engineering fundamentals / Bailey JE, Ollis DF - Version details, Trove. (2016).
  18. Shuler ML, Kargı F, Bioprocess engineering: basic concepts, Prentice Hall (1992).
  19. Bouguettoucha A, Balannec B, Nacef S, Amrane A, Enzyme Microb. Technol., 41(3), 377, 2007
  20. Yano T, Koga S, Biotechnol. Bioeng., 11, 139, 1969
  21. Luong JH, Biotechnol. Bioeng., 29, 242, 1987
  22. Gokulakrishnan S, Gummadi SN, Process Biochem., 41(6), 1417, 2006
  23. Luedeking R, Piret EL, J. Biochem. Microbiol. Technol. Eng., 1, 393, 1959
  24. Guerra NP, Agrasar AT, Macias CL, Bernardez PF, Castro LP, J. Food Eng., 82(2), 103, 2007
  25. Lasdon LS, Waren AD, Jain A, Ratner M, ACM Trans Math Sofrw, 3, 34, 1978
  26. Kumar S, Prabhu AA, Dasu VV, Pakshirajana K, Prep. Biochem. BIotech., DOI:10.1080/10826068.2016.1168841., 2016
  27. Mukherjee J, Majumdar S, Scheper T, Appl. Microbiol. Biotechnol., 53(2), 180, 2000
  28. Callewaert R, Vuyst LD, Appl. Environ. Microbiol., 66, 606, 2000
  29. Albanese E, Kafkewitz K, Appl. Environ. Microbiol., 36, 25, 1978
  30. Khamna S, Yokota A, Lumyong S, Int. J. Integr. Biol., 6, 22, 2009
  31. Shah AJ, Karadi RV, Parekh PP, Asian J. Biotechnol., 2, 169, 2010
  32. Liu FS, Zajic JE, Appl. Microbiol. Biotechnol., 25, 92, 1973
  33. Geckil H, Gencer S, Uckun M, Enzyme Microb. Technol., 35(2-3), 182, 2004
  34. Heinemann B, Howard AJ, Appl. Microbiol. Biotechnol., 18, 550, 1969
  35. Abdel-Fattah YR, Olama ZA, Process Biochem., 38(1), 115, 2002
  36. Prakasham RS, Rao CS, Rao RS, Lakshmi GS, Sarma PN, J. Appl. Microbiol., 102(5), 1382, 2007
  37. He Q, Li N, Chen X, Ye Q, Bai J, Xiong J, Ying H, Korean J. Chem. Eng., 28(2), 544, 2011
  38. Surendhiran D, Vijay M, Sivaprakash B, Sirajunnisa A, 3Biotech., 5, 663, 2015
  39. Tosa T, Sano R, Yamamoto K, Nakamura M, Ando K, Appl. Microbiol. Biotechnol., 22, 387, 1971
  40. Sun DX, Setlow P, J. Bacteriol., 173, 3831, 1991