Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 110-117, 2017
Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis
Three kinds of solid acid catalysts were prepared from alkali lignin in the waste liquor of pulping using carbonation-sulfonation method with different pretreatment. The lignin-derived solid acids (LDSAs) were characterized by FESEM, XRD, FTIR, TGA, BET and acid-base titration, respectively. A comparison study on the catalytic performance of LDSA prepared by different pretreatment method before carbonation in the hydrolysis of microcrystalline cellulose (MCC) was carried out. Results showed that the LDSA prepared by chemical activation with phosphoric acid (LPC-SO3H) exhibited superior catalytic activity due to its higher densities of -COOH group (1.68mmol/g) as binding site and -SO3H group (0.88mmol/g) as catalytic site as well as its larger specific surface area (488.4m2/g) than those of the other two LDSAs. A total reducing sugar yield of 50.8% in MCC hydrolysis was obtained under the reaction conditions of temperature of 180 ℃, time of 3 h, MCC concentration of 6mg/mL and mass ratio of catalyst to MCC of 3.3 (w/w). Additionally, the value activation energy for hydrolysis of MCC to reducing sugars using LPC-SO3H was 83.31 kJ/mol, which was smaller than that using sulfuric acid.
[References]
  1. Wang J, Xi J, Wang Y, Green Chem., 17, 737, 2015
  2. Hu L, Lin L, Wu Z, Zhou SY, Liu SJ, Appl. Catal. B: Environ., 174, 225, 2015
  3. Hu L, Tang X, Wu Z, Lin L, Xu JX, Xu N, Dai BL, Chem. Eng. J., 263, 299, 2015
  4. Wu M, Wang Y, Wang D, Tan M, Li P, Wu W, Tsubaki N, J. Porous Mat., 23, 263, 2015
  5. Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M, ACS Appl. Mater Interfaces, 7, 26737, 2015
  6. Zhou L, Liu Z, Bai Y, Lu T, Yang X, Xu J, J. Energy Chem., 25, 141, 2016
  7. Zhou Y, Huang R, Ding F, Brittain AD, Liu J, Zhang M, Xiao M, Meng Y, Sun L, ACS Appl. Mater Interfaces, 6, 7417, 2014
  8. Cheng MX, Shi T, Guan HY, Wang ST, Wang XH, Jiang ZJ, Appl. Catal. B: Environ., 107(1-2), 104, 2011
  9. Hegner J, Pereira KC, DeBoef B, Lucht BL, Tetrahedron Lett., 51, 2356, 2010
  10. Rinaldi R, Palkovits R, Schuth F, Angew. Chem.-Int. Edit., 47, 8047, 2008
  11. Fu ZW, Wan H, Cui Q, Xie JH, Tang YJ, Guan GF, React. Kinet. Catal. Lett., 104, 313, 2011
  12. Fu ZW, Wan H, Hu XS, Cui Q, Guan GF, React. Kinet. Catal. Lett., 107, 203, 2012
  13. Shen SG, Wang CY, Cai B, Li HM, Han Y, Wang T, Qin HF, Fuel, 113, 644, 2013
  14. Shen SG, Cai B, Wang CY, Li HM, Dai G, Qin HF, Appl. Catal. A: Gen., 473, 70, 2014
  15. Guo F, Xiu ZL, Liang ZX, Appl. Energy, 98, 47, 2012
  16. Wu YY, Fu ZH, Yin DL, Xu Q, Liu FL, Lu CL, Mao LQ, Green Chem., 12, 696, 2010
  17. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M, J. Am. Chem. Soc., 130(38), 12787, 2008
  18. Zhong CG, Cao Q, Guo LC, Deng SB, React. Kinet. Catal. Lett., 112, 361, 2014
  19. Guo HX, Qi XH, Li LY, Smith RL, Bioresour. Technol., 116, 355, 2012
  20. Guo HX, Lian YF, Yan LI, Qi HX, Smith RL, Green Chem., 15, 2167, 2013
  21. Qi XH, Guo HX, Li LY, Smith RL, Chemsuschem, 5, 2215, 2012
  22. Ayyachamy MM, Cliffe FE, Coyne JM, Collier J, Tuohy MG, Biomass. Conv. Bioref., 3, 255, 2013
  23. Pua FL, Fang Z, Zakaria S, Guo F, Chia CH, Biotechnol. Biofuels, 4, 56, 2011
  24. Hu S, Hsieh YL, J. Mater. Chem. A, 1, 11279, 2013
  25. Gan LH, Zhou MS, Qiu XQ, Holzforschung, 69, 25, 2015
  26. Gan LH, Zhou MS, Yang DJ, Qiu XQ, J. Dispersion Sci. Technol., 34, 644, 2012
  27. Hu L, Wu Z, Xu JX, Zhou SY, Tang GD, Korean J. Chem. Eng., 1, 1, 2016
  28. Hu SZ, Jiang F, Hsieh YL, ACS Sustainable Chem. Eng., 3, 2566, 2015
  29. Zhang XC, Zhang Z, Wang F, Wang YH, Song Q, Xu J, J. Mol. Catal. A-Chem., 377, 102, 2013
  30. Lin GF, Jiang JC, Wu KJ, Sun K, Bioenergy Res., 6, 1237, 2013
  31. Zuo SL, Yang JX, Liu JL, Cai X, Fuel Process. Technol., 90(7-8), 994, 2009
  32. Wikberg H, Ohra-aho T, Pileidis F, Titirici MM, ACS Sustainable Chem. Eng., 3, 2737, 2015
  33. Shen SG, Wang CY, Cai B, Li HM, Han Y, Wang T, Qin HF, Fuel, 113, 644, 2013
  34. Shuai L, Pan XJ, Energy Environ. Sci., 5, 6889, 2012
  35. Hu SL, Smith TJ, Lou WY, Zong MH, J. Agric. Food Chem., 62, 1905, 2014
  36. Xiong Y, Zhang ZH, Wang X, Liu B, Lin JT, Chem. Eng. J., 235, 349, 2014
  37. Sun Z, Tao ML, Zhao Q, Guang HY, Shi T, Wang XH, Cellulose, 22, 675, 2015
  38. Onda A, Ochi T, Yanagisawa K, Green Chem., 10, 1033, 2008
  39. Lai DM, Deng L, Guo QX, Fu Y, Energy Environ. Sci., 4, 3552, 2011
  40. Lai DM, Deng L, Li J, Liao B, Guo QX, Fu Y, ChemSusChem, 4, 55, 2011
  41. Wang JJ, Ren JW, Liu XH, Lu GZ, Wang YQ, AIChE J., 59(7), 2558, 2013
  42. Yang ZZ, Huang RL, Qi W, Tong LP, Su RX, He ZM, Chem. Eng. J., 280, 90, 2015
  43. Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A, Green Chem., 13, 326, 2011