Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 87-99, 2017
Enhancement of gasoline selectivity in combined reactor system consisting of steam reforming of methane and Fischer-Tropsch synthesis
A two-stage, one-dimensional configuration model including the steam reforming of methane (SRM) and Fischer-Tropsch (FT) synthesis has been developed for the production of hydrocarbons. This configuration is used to investigate hydrocarbon product distribution, such as gasoline. The first SRM reactor is fed by methane and steam, and the products are converted to hydrocarbons by the second FT reactor. The model was solved numerically by applying the finite difference approximation, and the set of first-order ODEs was solved in the axial direction. The results show that complete conversion of hydrogen in the second reactor can be achieved although a small amount of carbon monoxide remains. Furthermore, at higher H2O/CH4 ratio (and low CO in feed), lower C2-C5 yield and selectivity is obtained.
[References]
  1. Bartholomew CH, Farrauto RJ, In Fundamentals of industrial catalytic processes, Wiley, Hoboken, New Jersey, USA, Chapter 6 (2006).
  2. Soliman MA, El-Nashaie SSEH, Al-Ubaid AS, Adris A, Chem. Eng. Sci., 43, 1801, 1988
  3. Adris AM, Lim CJ, Grace JR, Chem. Eng. Sci., 52(10), 1609, 1997
  4. De Falco M, Di Paola L, Marrelli L, Nardella P, Chem. Eng. J., 128(2-3), 115, 2007
  5. Sadooghi P, Rauch R, J. Nat. Gas. Sci. Eng., 11, 46, 2013
  6. Wu X, Wu C, Wu SF, Chem. Eng. Res. Des., 96, 150, 2015
  7. Deckwer WD, Serpemen Y, Ralek M, Schmidt B, Ind. Eng. Chem. Process Des. Dev., 21, 231, 1982
  8. Turner JR, Mills PL, Chem. Eng. Sci., 45, 2317, 1990
  9. Song HS, Ramkrishna D, Trinh S, Wright H, Korean J. Chem. Eng., 21(2), 308, 2004
  10. Wu JM, Zhang HT, Ying WY, Fang DY, Chem. Eng. Technol., 33(7), 1083, 2010
  11. Park N, Kim JR, Yoo Y, Lee J, Park MJ, Fuel, 122, 229, 2014
  12. Kim YH, Jun KW, Joo H, Han C, Song IK, Chem. Eng. J., 155(1-2), 427, 2009
  13. Avci AK, Trimm DL, Onsan ZI, Chem. Eng. Sci., 56(2), 641, 2001
  14. Johns M, Collier P, Spencer MS, Alderson T, Hutchings GJ, Catal. Lett., 90(3-4), 187, 2003
  15. Marvast MA, Sohrabi M, Zarrinpashne S, Baghmisheh G, Chem. Eng. Technol., 28(1), 78, 2005
  16. Pour AN, Shahri SMK, Zamani Y, Irani M, Tehrani S, J. Nat. Gas. Chem., 17, 242, 2008
  17. Xu J, Froment GF, AIChE J., 35, 88, 1989
  18. Montazer-Rahmati, Mehdi M, Bargah-Soleimani M, Can. J. Chem. Eng., 79(5), 800, 2001
  19. Brauer H, Chem. Ind. Technol., 29, 785, 1957
  20. Reichelt W, Blaβ E, Chem. Ind. Technol., 43, 949, 1971
  21. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  22. De Wasch AP, Froment GF, Chem. Eng. Sci., 27, 567, 1972
  23. Froment GF, Bischoff KB, Chemical Reactor Analysis and Design, John Wiley, New York (1979).
  24. Kunii D, Smith JM, AIChE J., 6, 71, 1960
  25. Cussler EL, Diffusion, Mass Transfer in Fluid Systems, Cambridge:Cam. Univ. Press, 525: ll (1984).
  26. Wilke CR, Chem. Eng. Prog., 45, 218, 1949
  27. Panahi M, MSc thesis, Sharif University of Technology, Tehran, Iran (2005).
  28. Krishnamoorthy S, Li AW, Iglesia E, Catal. Lett., 80(1-2), 77, 2002
  29. Rahimpour MR, Elekaei H, Fuel Process. Technol., 90(6), 747, 2009
  30. Everson RC, Woodburn ET, Kirk ARM, J. Catal., 53, 186, 1978