Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 66-72, 2017
Synthesis of γ-alumina nano powder from Nepheline syenite
Nano γ-alumina was produced using Nepheline syenite ore by leaching and precipitation process at a certain pH in the presence of sodium dodecyl sulfate (SDS) as a surfactant. The produced nanostructure was characterized by XRD, SEM, EDX, DLS, BET and FT-IR. The XRD pattern confirmed the tetragonal structure of alumina The nano structure of alumina was approved by SEM and the particle size distribution were between 41 to 486 nm, confirmed by DLS. BET analysis showed that the specific surface area of nanopowder was about 39.1m2/g. The synthesis conditions were modeled and optimized by RSM. The optimum conditions resulted in leaching time, the mass ratio of Nepheline/HCl, and the reflux temperature of 2 h, 20, and 70 °C, respectively. Under optimum conditions, the extraction efficiency was 82%. The prepared nano γ-alumina has higher removal efficiency than commercial types in the removal of p-nitrophenol by adsorption process.
[References]
  1. Davis K, Material Review: Alumina (Al2O3), School of Doctoral Studies European Union Journal (2010).
  2. Pan F, Lu X, Wang T, Wang Y, Zhang Z, Yan Y, Yang S, Mater. Lett., 91, 136, 2013
  3. Li W, Jia Q, Zhang Z, Wang Y, Korean J. Chem. Eng., 33(4), 1337, 2016
  4. Tamele MW, Discussions of the Faraday Society, 8, 270, 1950
  5. Park JE, Kim BB, Park ED, Korean J. Chem. Eng., 32(11), 2212, 2015
  6. Wang S, Li X, Wang S, Li Y, Zhai Y, Mater. Lett., 62, 3552, 2008
  7. Paglia G, Rohl AL, Buckley CE, Gale JD, Phys. Rev. B, 71, 224115, 2005
  8. Cushing BL, Kolesnichenko VL, O'Connor CJ, Chem. Rev., 104(9), 3893, 2004
  9. Niederberger M, Pinna N, Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application, Springer Science & Business Media (2009).
  10. Byrappa K, Yoshimura M, Handbook of hydrothermal technology, William Andrew (2012).
  11. Kim Y, Lee B, Yi J, Korean J. Chem. Eng., 19(5), 908, 2002
  12. Hosseini SA, Int. J. Mater. Chem. Phys., 1(2), 93, 2015
  13. Pan F, Lu X, Wang T, Wang Y, Zhang Z, Yan Y, Appl. Clay Sci., 85, 31, 2013
  14. Qu L, He C, Yang Y, He Y, Liu Z, Mater. Lett., 59, 4034, 2005
  15. Ezoddin M, Shemirani F, Abdi K, Saghezchi MK, Jamali MR, J. Hazard. Mater., 178(1-3), 900, 2010
  16. Parida KM, Pradhan AC, Das J, Sahu N, Mater. Chem. Phys., 113(1), 244, 2009
  17. Majidian N, Habibi N, Rezaei M, Korean J. Chem. Eng., 31(7), 1162, 2014
  18. Yang H, Liu M, Ouyang J, Appl. Clay Sci., 47, 438, 2010
  19. Ferreira AR, Kucukbenli E, De Gironcoli S, Souza WF, Chiaro SSZ, Konstantinova E, Leitao AA, Chem. Phys., 423, 62, 2013
  20. Ballinger TH, Yates JT, Langmuir, 7, 3041, 1991
  21. Sicard L, Llewellyn PL, Patarin J, Kolenda F, Microporous Mesoporous Mater., 44-45, 195, 2001
  22. Ray JC, You KS, Ahn JW, Ahn WS, Microporous Mesoporous Mater., 100, 183, 2007
  23. Zabeti M, Daud WMAW, Aroua MK, Appl. Catal. A: Gen., 366(1), 154, 2009
  24. Chong MN, Zhu HY, Jin B, Chem. Eng. J., 156(2), 278, 2010
  25. Han X, He Y, Zhao H, Wang D, Korean J. Chem. Eng., 31(10), 1810, 2014
  26. Wang W, Ma H, Xu W, Gong L, Zhang W, Zou D, Biochem. Eng. J., 39, 604, 2008
  27. Khataee AR, Zarei M, Moradkhannejhad L, Desalination, 258(1-3), 112, 2010
  28. Vordonis L, Koutsoukos PG, Lycourghiotis A, Colloids Surf., 50, 353, 1990
  29. Xiao J, Zhao L, Zhang W, Liu X, Chen Y, Korean J. Chem. Eng., 31(2), 253, 2014