Issue
Korean Journal of Chemical Engineering,
Vol.34, No.1, 1-5, 2017
Simplified synthesis of K2CO3-promoted hydrotalcite based on hydroxide-form precursors: Effect of Mg/Al/K2CO3 ratio on high-temperature CO2 sorption capacity
Hydrotalcite was synthesized from hydroxide-form precursors to prepare a novel high-temperature CO2 sorbent, and the effect of Mg/Al ratio on CO2 sorption was studied. To enhance the CO2 sorption capacity of the sorbent, K2CO3 was coprecipitated during the synthetic reaction. X-ray diffraction analysis indicated that the prepared samples had a well-defined crystalline hydrotalcite structure, and confirmed that K2CO3 was successfully coprecipitated in the samples. The morphology of the hydrotalcite was confirmed by scanning electron microscopy, and N2 adsorption analysis was used to estimate its surface area and pore volume. In addition, thermogravimetric analysis was used to measure its CO2 sorption capacity, and the results revealed that the Mg : Al : K2CO3 ratio used in the preparation has an optimum value for maximum CO2 sorption capacity.
[References]
  1. Hofmann DJ, Butler JH, Dlugokencky EJ, Elkins JW, Masarie K, Montzka SA, Tans P, Tellus B, 58, 614, 2006
  2. Ida J, Lin YS, Environ. Sci. Technol., 37, 1999, 2003
  3. Liu WQ, An H, Qin CL, Yin JJ, Wang GX, Feng B, Xu MH, Energy Fuels, 26(5), 2751, 2012
  4. Garcia-Gallastegui A, Iruretagoyena D, Mokhtar M, Asiri AM, Basahel SN, Al-Thabaiti SA, Alyoubi AO, Chadwick D, Shaffer MSP, J. Mater. Chem., 22, 13932, 2012
  5. Li F, Jiang XR, Evans DG, Duan X, J. Porous Mat., 12, 55, 2005
  6. Reddy MKR, Xu ZP, Lu GQ, da Costa JCD, Ind. Eng. Chem. Res., 45(22), 7504, 2006
  7. Feng L, Duan X, Structure and Bonding, 119, 193, 2006
  8. Barakos N, Pasias S, Papayannakos N, Bioresour. Technol., 99(11), 5037, 2008
  9. Debecker DP, Gaigneaux EM, Busca G, Chem.-Eur. J., 15, 3920, 2009
  10. Yavuz CT, Shinall BD, Iretskii AV, White MG, Golden T, Atilhan M, Ford PC, Stucky GD, Chem. Mater., 21, 3473, 2009
  11. Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26(24), 18788, 2010
  12. Wang QA, Tay HH, Ng DJW, Chen LW, Liu Y, Chang J, Zhong ZY, Luo JZ, Borgna A, ChemSusChem, 3, 965, 2010
  13. Wang Q, Tay HH, Guo ZH, Chen LW, Liu Y, Chang J, Zhong ZY, Luo JZ, Borgna A, Appl. Clay Sci., 55, 18, 2012
  14. Walspurger S, Boels L, Cobden PD, Elzinga GD, Haije WG, van den Brink RW, ChemSusChem, 1, 643, 2008
  15. Jang HJ, Lee CH, Kim S, Kim SH, Lee KB, ACS Appl. Mater. Interfaces, 6, 6914, 2014
  16. Zhang Z, Chen GM, Xu KL, Appl. Clay Sci., 72, 206, 2013
  17. Yang WS, Kim Y, Liu PKT, Sahimi M, Tsotsis TT, Chem. Eng. Sci., 57(15), 2945, 2002
  18. Rey F, Fornes V, Rojo JM, J. Chem. Soc.-Faraday Trans., 88, 2233, 1992
  19. Min YJ, Hong SM, Kim SH, Lee KB, Jeon SG, Korean J. Chem. Eng., 31(9), 1668, 2014
  20. Yang JI, Kim JN, Korean J. Chem. Eng., 23(1), 77, 2006
  21. Yong Z, Mata V, Rodriguez AE, Ind. Eng. Chem. Res., 40(1), 204, 2001