Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3523-3528, 2016
Water gas shift reaction in a catalytic bubbling fluidized bed reactor
The water gas shift reaction in a catalytic bubbling fluidized bed reactor was investigated by using simulated syngas (40% H2, 40% CO and 20% CO2) for the pre-combustion CO2 capture and hydrogen production application. A commercial low temperature shift (LTS) catalyst with particle sizes of 200-300 μm was used to investigate the promotion effect by exchanging the fixed bed reaction with the fluidized bed reactor. The effects of the reactor temperature (180-400 ℃), space velocity (800-4,800 cm3/hㆍg), and steam/CO ratio (1.0-2.5) on the CO conversion and syngas composition were determined, and the highest CO conversion was 86.8% at 300 ℃ with the LTS catalyst at a space velocity of 800 cm3/hㆍg and steam/CO ratio of 2.5. The experiments exhibited an improvement in activity and a conversion reached that given by equilibrium at temperatures over 300 ℃. Also, the performance was much improved than that when a fixed bed system was used.
[References]
  1. Lee SH, Kim JN, Eom WH, Ryi SK, Park JS, Baek IH, Chem. Eng. J., 207-208, 521, 2012
  2. Fernandez E, Helmi A, Coenen K, Melendez J, Viviente JL, Tanaka DAP, Annaland MV, Gallucci F, Int. J. Hydrog. Energy, 40(8), 3506, 2015
  3. Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG, J. Catal., 219(2), 389, 2003
  4. Lee SH, Lee JG, Kim JH, Choi YC, Fuel, 85(5-6), 803, 2006
  5. Shoko E, McLellan B, Dicks AL, da Costa JCD, Int. J. Coal Geol., 65(3-4), 213, 2006
  6. Lee SH, Choi KB, Lee JG, Kim JH, Korean J. Chem. Eng., 23(4), 576, 2006
  7. Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239, 2010
  8. Hydrogen from Coal Program RD & D Plan, U.S. Dept. of Energy (2007).
  9. Bustamante F, The High-Temperature, High-Pressure Homogeneous Water-Gas Shift Reaction in a Membrane Reactor, Ph.D. Thesis, University of Pittsburgh (2004).
  10. Lim H, Korean J. Chem. Eng., 32(8), 1522, 2015
  11. Costa JLR, Marchetti GS, Rangel MDC, Catal. Today, 77(3), 205, 2002
  12. Johnsen RE, Molenbroek AM, Stahl K, J. Appl. Crystallogr., 39, 519, 2006
  13. Vandenbussche KM, Froment GF, J. Catal., 161(1), 1, 1996
  14. Choi Y, Stenger HG, J. Power Sources, 124(2), 432, 2003
  15. Patil CS, Annaland MV, Kuipers JAM, Ind. Eng. Chem. Res., 44(25), 9502, 2005
  16. Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Heinemann, Massachusetts, USA (1991).
  17. Lee SH, Lee DH, Kim SD, Korean J. Chem. Eng., 18(3), 387, 2001
  18. Lee SH, Kim SD, Park SH, Korean J. Chem. Eng., 19(6), 1020, 2002
  19. Lim JH, Shin JH, Bae K, Kim JH, Lee DH, Han JH, Lee DH, Korean J. Chem. Eng., 32(9), 1938, 2015
  20. Ruettinger W, Ilinich O, Farrauto RJ, J. Power Sources, 118(1-2), 61, 2003
  21. Arbelaadez O, Reina TR, Ivanova S, Bustarnante F, Villa AL, Centeno MA, Odriozola JA, Appl. Catal. A: Gen., 497, 1, 2015
  22. Physical and Thermodynamic Properties of Elements and Compounds, United Catalysts Inc., Louisville, KY (1990).
  23. Ladebeck JR, Wagner JP, in Handbook of Fuel cells, Fundamentals, Technology and Applications, Vielstich W, Lamm A, Gasteiger HA, Ed., Wiley, Chichester, Vol. 3, Part 2, 190 (2003).
  24. Ryu H, Park J, Lee D, Park J, Bae D, Trans. Korean Hydrogen New Energy Soc., 26(2), 96, 2015
  25. Vandenbussche KM, Froment GF, J. Catal., 161(1), 1, 1996
  26. Khajeh S, Aboosadi ZA, Honarvar B, J. Natural Gas Sci. Eng., 19, 152, 2014
  27. van der Laan GP, Beenackers AACM, Appl. Catal. A: Gen., 193(1-2), 39, 2000