Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3473-3486, 2016
CO2 absorption, density, viscosity and vapor pressure of aqueous potassium carbonate+2-methylpiperazine
The physical properties of the absorbent are important for designing a CO2 capture process. The density and viscosity are used to calculate the mass transfer coefficient that determines the height of the absorber. Furthermore, these physical data affect the selection of liquid pump and pipe lines. Vapor pressure is a factor that estimates absorbent loss and condenser size. In this study, the physical properties of the aqueous potassium carbonate (K2CO3)+2-methylpiperazine (2MPZ) solution were obtained in a temperature range from 303.15 K to 343.15 K. The physical properties of the different aqueous K2CO3+2MPZ solutions (various amine concentrations and amounts of CO2 absorbed) were measured to obtain the parameters for process design. A regression analysis was conducted for the experimental data. The densities of the aqueous K2CO3+2MPZ solutions increased when the amounts of absorbed CO2 or 2MPZ concentrations were increased. The densities and viscosities of the absorbents decreased according to the increase in temperature. The viscosities of the absorbent increased when 2MPZ concentrations were increased. The temperature dependency of vapor pressure follows the Antoine equation; the CO2 gas and aqueous solution of a base follows the vapor pressure variation of the mixed solution.
[References]
  1. Bello A, Idem RO, Ind. Eng. Chem. Res., 45(8), 2569, 2006
  2. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609, 2011
  3. Astarita G, Mass transfer with chemical reaction, Elsevier (1967).
  4. Baker R, McCrea D, The Benfield LOHEAT process: an improved HPC absorption process, in Presented at AIChE 1981 Spring National Meeting, Houston TX (1981).
  5. Bartoo R, Chem. Eng. Prog., 80, 35, 1984
  6. Bartoo R, Gemborys T, Wolf C, Recent improvements to the benfield process extend its use, in Nitrogen'91 Conference (1991).
  7. Furukawa S, Bartoo R, Improved Benfield process for ammonia plants, Universal Oil Products, Des Plaines, IL, USA (1997).
  8. Yoon YI, Kim YE, Nam SC, Jeong SK, Park SY, Youn MH, Park KT, Energy Procedia, 63, 1745, 2014
  9. Amundsen TG, Oi LE, Eimer DA, J. Chem. Eng. Data, 54(11), 3096, 2009
  10. Weiland RH, Dingman JC, Cronin DB, Browning GJ, J. Chem. Eng. Data, 43(3), 378, 1998
  11. Sherwood T, Shipley G, Holloway F, Ind. Eng. Chem., 30, 765, 1938
  12. Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT, Ind. Eng. Chem. Res., 48(20), 9233, 2009
  13. Mirzaei S, Shamiri A, Aroua MK, Rev. Chem. Eng., 31(6), 521, 2015
  14. Choi JH, Oh SG, Jo M, Yoon YI, Jeong SK, Nam SC, Chem. Eng. Sci., 72, 87, 2012
  15. Gorset O, Knudsen JN, Bade OM, Askestad I, Energy Procedia, 63, 6267, 2014
  16. Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A, Chem. Eng. J., 171(3), 725, 2011
  17. Singh D, Croiset E, Douglas PL, Douglas MA, Energy Conv. Manag., 44(19), 3073, 2003
  18. Romeo LM, Bolea I, Escosa JM, Appl. Therm. Eng., 28, 1039, 2008
  19. Khimeche K, Djellouli F, Dahmani A, Mokbel I, J. Chem. Eng. Data, 56(12), 4972, 2011
  20. Sanyal D, Vasishtha N, Saraf DN, Ind. Eng. Chem. Res., 27, 2149, 1988
  21. Smith K, Xiao G, Mumford K, Gouw J, Indrawan I, Thanumurthy N, Quyn D, Cuthbertson R, Rayer A, Nicholas N, Energy Fuels, 28, 299, 2013
  22. Astarita G, Savage DW, Longo JM, Chem. Eng. Sci., 36, 581, 1981
  23. Han JY, Jin J, Eimer DA, Melaaen MC, J. Chem. Eng. Data, 57(4), 1095, 2012
  24. Maham Y, Teng TT, Hepler LG, Mather AE, J. Solution Chem., 23, 195, 1994
  25. Maham Y, Liew CN, Mather A, J. Solution Chem., 31, 743, 2002
  26. Arachchige US, Aryal N, Eimer DA, Melaaen MC, Ann. T. Nord. Rheol. Soc., 21, 299, 2013
  27. Belabbaci A, Razzouk A, Mokbel I, Jose J, Negadi L, J. Chem. Eng. Data, 54(8), 2312, 2009
  28. Kim I, Svendsen HF, Borresen E, J. Chem. Eng. Data, 53(11), 2521, 2008
  29. Wu SH, Caparanga AR, Leron RB, Li MH, Exp. Therm. Fluid Sci., 48, 1, 2013
  30. Svensson H, Hulteberg C, Karlsson HT, Energy Procedia, 63, 750, 2014
  31. Riesenfeld FC, Kohl AL, Gas purification, Gulf Publishing Company (1974).
  32. Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105, 2012
  33. Kim YE, Yun SH, Choi JH, Nam SC, Park SY, Jeong SK, Yoon YI, Energy Fuels, 29(4), 2582, 2015
  34. Rochelle GT, Goff G, Cullinane T, Freguia S. Research results for CO2 capture from flue gas by aqueous absorption/stripping, in Proceedings of the Laurance Reid Gas Conditioning Conference (2002).
  35. Song JH, Park SB, Yoon JH, Lee H, J. Chem. Eng. Data, 41(5), 1152, 1996
  36. Lee S, Choi SI, Maken S, Song HJ, Shin HC, Park JW, Jang KR, Kim JH, J. Chem. Eng. Data, 50(5), 1773, 2005
  37. Geng Y, Chen S, Wang T, Yu D, Peng C, Liu H, Hu Y, J. Mol. Liq., 143, 100, 2008
  38. Zhao YS, Zhang XP, Zeng SJ, Zhou Q, Dong HF, Tian XA, Zhang SJ, J. Chem. Eng. Data, 55(9), 3513, 2010
  39. Song HJ, Lee MG, Kim H, Gaur A, Park JW, J. Chem. Eng. Data, 56(4), 1371, 2011
  40. Murshid G, Shariff AM, Keong LK, Bustam MA, J. Chem. Eng. Data, 56(5), 2660, 2011
  41. Jayarathna SA, Weerasooriya A, Dayarathna S, Eimer DA, Melaaen MC, J. Chem. Eng. Data, 58(4), 986, 2013
  42. Fu D, Chen LH, Qin LG, Fluid Phase Equilib., 319, 42, 2012
  43. Antoine C, CR Hebd. Seances Acad. Sci., 107, 681, 1888
  44. Thomson GW, Chem. Rev., 38, 1, 1946
  45. Gibbons R, Laughton A, Fluid Phase Equilib., 18, 61, 1984
  46. Stryjek R, Vera J, Fluid Phase Equilib., 25, 279, 1986
  47. Brandes BT, Ind. Eng. Chem. Res., 44(3), 639, 2005
  48. Kamps APS, Meyer E, Rumpf B, Maurer G, J. Chem. Eng. Data, 52(3), 817, 2007
  49. Shiflett MB, Kasprzak DJ, Junk CP, Yokozeki A, J. Chem. Thermodyn., 40(1), 25, 2008
  50. Kuranov G, Rumpf B, Smirnova NA, Maurer G, Ind. Eng. Chem. Res., 35(6), 1959, 1996