Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3465-3472, 2016
CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption
The specific heat capacity, heat of CO2 absorption, and CO2 absorption capacity of aqueous solutions of potassium carbonate (K2CO3)+2-methylpiperazine (2-MPZ) and monoethanolamine (MEA) were measured over various temperatures. An aqueous solution of K2CO3+2-MPZ is a promising absorbent for CO2 capture because it has high CO2 absorption capacity with improved absorption rate and degradation stability. Aqueous solution of MEA was used as a reference absorbent for comprison of the thermodynamic characteristics. Specific heat capacity was measured using a differential scanning calorimeter (DSC), and heat of CO2 absorption and CO2 absorption capacity were measured using a differential reaction calorimeter (DRC). The CO2-loaded solutions had lower specific heat capacities than those of fresh solutions. Aqueous solutions of K2CO3+2-MPZ had lower specific heat capacity than those of MEA over the temperature ranges of 303-353 K. Under the typical operating conditions for the process (CO2 loading=0.23mol- CO2·mol-1-solute in fresh solution, T=313 K), the heat of absorption (-ΔHabs) of aqueous solutions of K2CO3+2-MPZ and MEA were approximately 49 and 75 kJ·mol-CO2, respectively. The thermodynamic data from this study can be used to design a process for CO2 capture.
[References]
  1. Barzagli F, Mani F, Peruzzini M, Energy Environ. Sci., 3, 772, 2010
  2. Ahmadi M, Gomes VG, Ngian K, Sep. Purif. Technol., 63(1), 107, 2008
  3. Oexmann J, Kather A, Linnenberg S, Liebenthal U, Greenhouse Gas Sci. Technol., 2, 80, 2012
  4. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609, 2011
  5. Yokoyama T, Sep. Purif. Technol., 94, 97, 2012
  6. Oexmann J, Kather A, Int. J. Greenhouse Gas Control., 4, 36, 2010
  7. Weiland RH, Dingman JC, Cronin DB, J. Chem. Eng. Data, 42(5), 1004, 1997
  8. Chiu LF, Liu HF, Li MH, J. Chem. Eng. Data, 44, 631, 1999
  9. Chiu LF, Li MH, J. Chem. Eng. Data, 44, 1396, 1999
  10. Chen YJ, Li MH, J. Chem. Eng. Data, 46(1), 102, 2001
  11. Chen YJ, Shih TW, Li MH, J. Chem. Eng. Data, 46(1), 51, 2001
  12. Harris F, Kurnia KA, Mutalib MIA, Murugesan T, J. Chem. Eng. Data, 55(1), 547, 2010
  13. Song HJ, Lee MG, Kim H, Gaur A, Park JW, J. Chem. Eng. Data, 56(4), 1371, 2011
  14. Kim I, Svendsen HF, Ind. Eng. Chem. Res., 46(17), 5803, 2007
  15. McCann N, Maeder M, Attalla M, Ind. Eng. Chem. Res., 47(6), 2002, 2008
  16. Qin F, Wang S, Kim I, Svendsen HF, Chen C, Int. J. Greenhouse Gas Control., 5, 405, 2011
  17. Arcis H, Ballerat-Busserolles K, Rodier L, Coxam JY, J. Chem. Eng. Data, 56(8), 3351, 2011
  18. Filburn T, Helble JJ, Weiss RA, Ind. Eng. Chem. Res., 44(5), 1542, 2005
  19. Kim I, Hoff KA, Hessen ET, Haug-Warberg T, Svendsen HF, Chem. Eng. Sci., 64(9), 2027, 2009
  20. Arcis H, Rodier L, Coxam JY, J. Chem. Thermodyn., 39(6), 878, 2007
  21. Arcis H, Ballerat-Busserolles K, Rodier L, Coxam JY, J. Chem. Eng. Data, 57(3), 840, 2012
  22. Arcis H, Rodier L, Ballerat-Busserolles K, Coxam JY, J. Chem. Thermodyn., 41(6), 783, 2009
  23. Kim I, Svendsen HF, Int. J. Greenhouse Gas Control., 5, 390, 2011
  24. Chen X, Rochelle GT, Chem. Eng. Res. Des., 87, 1693, 2011
  25. Laddha SS, Danckwerts PV, Chem. Eng. Sci., 37, 665, 1982
  26. Ramazani R, Mazinani S, Hafizi A, Jahanmiri A, Van der Bruggen B, Darvishmanesh S, Sep. Sci. Technol., 51(2), 327, 2016
  27. Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619, 2004
  28. Cullinane JT, Ph.D. Dissertation, University of Texas (2005).
  29. Cullinane JT, Rochelle GT, Fluid Phase Equilib., 227(2), 197, 2005
  30. Kohl AL, Nielsen RB, Gas Purification; 5th Ed., Gulf Publishing Company, Huston (1997).
  31. Chen X, Rochelle GT, Ind. Eng. Chem. Res., 52(11), 4229, 2013
  32. Astarita G, Savage DW, Longo JM, Chem. Eng. Sci., 36, 581, 1981
  33. Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105, 2012
  34. Kim YE, Yun SH, Choi JH, Nam SC, Park SY, Jeong SK, Yoon YI, Energy Fuels, 29(4), 2582, 2015
  35. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609, 2011
  36. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783, 2013
  37. Lim JA, Kim DH, Yoon Y, Jeong SK, Park KT, Nam SC, Energy Fuels, 26(6), 3910, 2012
  38. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467, 2002
  39. Sakwattanapong R, Aroonwilas A, Veawab A, Ind. Eng. Chem. Res., 44(12), 4465, 2005
  40. Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D, Ind. Eng. Chem. Res., 45(8), 2414, 2006
  41. Svensson H, Hultenberg C, Karlsson HT, Int. J. Greenhouse Gas Control., 17, 89, 2013
  42. Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 573, 1988
  43. Littel RJ, Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 47, 2027, 1992