Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3442-3447, 2016
Highly sensitive and selective dopamine detection by an amperometric biosensor based on tyrosinase/MWNT/GCE
Dopamine (3,4-dihydroxylphenyl ethylamine) is the most significant neurotransmitter in the human nervous system. Abnormal dopamine levels cause fatal neurological disorders, and thus measuring dopamine level in actual samples is important. Although electrochemical methods have been developed for detecting dopamine with high accuracy, certain substances (e.g., ascorbic acid) in actual samples often interfere with electrochemical dopamine detection. We developed tyrosinase-based dopamine biosensor with high sensitivity and selectivity. An electrochemically pretreated tyrosinase/multi-walled carbon nanotube-modified glassy carbon electrode (tyrosinase/MWNT/GCE) was prepared as an amperometric biosensor for selective dopamine detection. For optimizing the biosensor performance, pH, temperature, and scan rate were investigated. The electrochemically pretreated tyrosinase/MWNT/GCE exhibited not only the highest sensitivity (1,323mAM-1cm-2) compared to previously reported tyrosinase-based dopamine sensors, but also good long-term stability, retaining 90% of initial activity after 30 days. Additionally, ascorbic acid, a major interfering substances, was not oxidized at the potential used to detect dopamine oxidation, and the interfering effect of 4mM ascorbic acid was negligible when monitoring 1mM dopamine. Consequently, the electrochemically pretreated tyrosinase/MWNT/GCE is applicable for highly selective and sensitive dopamine detection in actual samples including interfering substances, thereby extending the practical use to monitor and diagnose neurological disorders.
[References]
  1. Tsai YC, Chiu CC, Sens. Actuators B-Chem., 125, 10, 2007
  2. Min K, Park DH, Yoo YJ, J. Biotechnol., 146, 40, 2010
  3. Apetrei IM, Apetrei C, Sens. Actuators B-Chem., 178, 40, 2013
  4. Zehani N, Fortgang P, Lachgar MS, Baraket A, Arab M, Dzyadevych SV, Kherrat R, Jaffrezic-Renault N, Biosens. Bioelectron., 74, 830, 2015
  5. Min K, Yoo YJ, Talanta, 80, 1007, 2009
  6. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG, Physiol. Rev., 78, 189, 1998
  7. Tembe S, Kubal BS, Karve M, D’Souza SF, Anal. Chim. Acta, 612, 212, 2008
  8. Zhou YL, Tian RH, Zhi JF, Biosens. Bioelectron., 22, 822, 2007
  9. Ros JR, Rodriguez-Lopez JN, Garcia-Canovas F, Biochem. J., 295, 309, 1993
  10. Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo YJ, Biosens. Bioelectron., 25, 1566, 2010
  11. Min K, Kim J, Park K, Yoo YJ, J. Mol. Catal. B-Enzym., 83, 87, 2012
  12. Roychoudhury A, Basu S, Jha SK, Biosens. Bioelectron., 16, 72, 2016
  13. Lupu S, Lete C, Balaure PC, Campo FJD, Munoz FX, Lakard B, Hihn JY, Sens. Actuators B-Chem., 181, 136, 2013
  14. Nguyen CV, Delzeit L, Cassell AM, Li J, Han J, Meyyappan M, Nano Lett., 2, 1079, 2002
  15. Ku SH, Palanisamy S, Chen SM, J. Colloid Interface Sci., 411, 182, 2013
  16. Wei H, Sun JJ, Xie Y, Lin CG, Wang YM, Yin WH, Chen GN, Anal. Chim. Acta, 588, 297, 2007
  17. Choi O, Kim BC, An JH, Min K, Kim YH, Um Y, Oh MK, Sang BI, Enzyme Microb. Technol., 49(5), 441, 2011
  18. Li YH, Jiang YY, Mo T, Zhou HF, Li YC, Li SX, J. Electroanal. Chem., 767, 84, 2016
  19. Selinheimo E, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O’Beirne D, Buchert J, Kruus K, J. Biotechnol., 130, 471, 2007
  20. Donato L, Algieri C, Rizzi A, Giorno L, J. Membr. Sci., 454, 346, 2014
  21. Bayramoglu G, Akbulut A, Arica MY, J. Hazard. Mater., 244-245, 528, 2013
  22. Dincer A, Becerik S, Aydemir T, Int. J. Biol. Macromol., 50, 815, 2012
  23. Hervas Perez JP, Lopez MSP, Lopez-Cabarcos E, Lopez-Ruiz B, Biosens. Bioelectron., 22, 429, 2006
  24. Maciejewska J, Pisarek K, Bartosiewicz I, Krysinski P, Jackowska K, Biegunski AT, Electrochim. Acta, 56(10), 3700, 2011