Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3425-3433, 2016
Polycyclic aromatic hydrocarbon emissions of non-road diesel engine treated with non-thermal plasma technology
Non-road diesel engines are important polycyclic aromatic hydrocarbon (PAH) sources in the environment due to their high emission concentration compared to on-road diesel engines. Particle- and gas-phase PAH concentrations of a non-road diesel engine were investigated. Non-thermal plasma (NTP) as an effective after-treatment technology was used to reduce PAH emissions. The results showed that particle-phase PAH concentrations were 329.7 μg/m3, 3,206.7 μg/m3, and 1,185.7 μg/m3 without the action of NTP at three different engine loads respectively. Relatively low concentrations were measured for gas-phase PAHs. Excellent linearity was shown for particle-phase with total PAH concentrations both with, and without, NTP. The gas-phase PAH concentrations linearly increased with engine load without NTP. The five most abundant compounds of PAHs were among low molecular weight (LMW) and medium molecular weight (MMW) compounds. Total PAH cleaning efficiency was beyond 50% when treated with NTP at the three different engine loads. We hypothesized that naphthalene (Nap) concentrations increased greatly at 60% and 80% engine loads because it was produced within the plasma zone by decomposition of high molecular weight (HMW) PAHs. The PAHs content of particulate matter (PM) aggregation at 60% load was approximately three times higher than at 40% and 80% loads. High correlation values were observed for MMW PAHs with total PAH concentrations. Correlations of PAH concentration reduction could be important to clarify the PAH reduction mechanism with NTP technology.
[References]
  1. Jung KW, Won YJ, Kong HJ, Oh CM, Lee DH, Lee JS, Cancer Res. Treatment, 46(2), 109, 2014
  2. White AJ, Bradshaw PT, Herring AH, Teitelbaum SL, Beyea J, Stellman SD, Steck SE, Mordukhovich I, Eng SM, Engel LS, Conway K, Hatch M, Neugut AI, Santella RM, Gammon MD, Environ. Int., 89, 185, 2016
  3. Ge YS, He C, Han XK, Trans. CSICE, 25(2), 125, 2007
  4. Alkurdi F, Karabet F, Dimashki M, Atmospheric, 120, 68, 2013
  5. Kumar V, Kothiyal N, J. Environ. Res. Dev., 5(3), 584, 2011
  6. Tavares M, Pinto JP, Souza AL, Scarminio IS, Solci MC, Atmos. Environ., 38(30), 5039, 2004
  7. Lim MC, Ayoko GA, Morawska L, Ristovski ZD, Jayaratne ER, Atmos. Environ., 39(40), 7836, 2005
  8. He C, Ge YS, Tan JW, You KW, Han XK, Wang JF, Fuel, 89(8), 2040, 2010
  9. Chien SM, Huang YJ, Chuang SC, Yang HH, Aerosol Air Quality Res., 9(1), 18, 2009
  10. Karavalakis G, Stournas S, Bakeas E, Atmos. Environ., 43(10), 1745, 2009
  11. Karavalakis G, Deves G, Fontaras G, Stournas S, Samaras Z, Bakeas E, Fuel, 89(12), 3876, 2010
  12. Karavalakis G, Bakeas E, Stournas S, Environ. Sci. Technol., 44(13), 5306, 2010
  13. Mok YS, Huh YJ, Plasma Chem. Plasma Process., 25(6), 625, 2005
  14. Rajanikanth B, Sinha D, Emmanuel P, Plasma Sources Sci. Technol., 10(3), 307, 2008
  15. Vinh T, Watanabe S, Furuhata T, Arai M, J. Energy Institute, 85(3), 163, 2012
  16. Chmielewski AG, Sun YX, Licki J, Bułka S, Kubica K, Zimek Z, RaPC, 67(3), 555, 2003
  17. The first construction machinery network, http://news.d1cm.com/2011/01/07/01071701229329.shtml.
  18. Xu F, Luo ZY, Wang P, Hou QH, Cao W, Fang MX, Cen KF, Proceedings-Chinese Soc. Electrical Eng., 27(32), 34, 2007
  19. Dong M, Cai YX, Li XH, Jiang F, Han WH, Applied Mechanics and Materials, Trans Tech Publ, 1023.
  20. Cai YX, Dong M, Li XH, Jiang F, Han WH, J. of Jiangsu University (Natural Science Ed.), 35(4), 380, 2014
  21. Du CM, Yan JH, Li XD, Cheron BG, You XF, Chi Y, Ni MJ, Cen KF, Plasma Chem. Plasma Process., 26(5), 517, 2006
  22. Yu L, Tu X, Li XD, Wang Y, Chi Y, Yan JH, J. Hazard. Mater., 180(1), 449, 2010
  23. Portet-Koltalo F, Machour N, Analytical methodologies for the control of particle-phase polycyclic aromatic compounds from diesel engine exhaust. Diesel Engine Combustion, Emissions and Condition Monitoring Intech, ISBN. 978 (2013).
  24. Lu T, Huang Z, Cheung CS, Ma J, Sci. Total Environ., 438, 33, 2012
  25. Abrantes RD, Assuncao JVDE, Pesquero CR, Atmos. Environ., 38(11), 1631, 2004
  26. Spezzano P, Picini P, Cataldi D, Atmos. Environ., 43(3), 539, 2009
  27. Spezzano P, Cataldi PD, Messale F, Manni C, Atmos. Environ., 42(18), 4332, 2008
  28. Junhua G, Maodong F, Zhongrong Z, Trans. CSICE, 5, 423, 2009
  29. Lou DM, Gao F, Yao D, Tan PQ, Hu ZY, Trans. CICEE, 35(4), 31, 2014
  30. Arnott WP, Environ. Sci. Technol., 38(9), 2557, 2004
  31. Ma CC, Gao JB, Zhong L, Xing SK, Appl. Therm. Eng., 99, 1110, 2016
  32. Xing SK, Ma CC, Ma S, Chinese Internal Combustion Engine Engineering, 1, 8, 2013
  33. Chae JO, J. Electrost., 57(3), 251, 2003
  34. Tonkyn RG, Barlow SE, Hoard JW, Appl. Catal. B: Environ., 40(3), 207, 2003
  35. Song CL, Bin F, Tao ZM, Li FC, Huang QF, J. Hazard. Mater., 166(1), 523, 2009
  36. Merritt PM, Ulmet V, Mccormick RL, Mitchell WE, Baumgard KJ, Regulated and unregulated exhaust emissions comparison for three tier II non-road diesel engines operating on ethanol-diesel blends: SAE Technical Paper; 2005. Report No.: 0148-7191.
  37. Yamamoto T, Mimura T, Otsuka N, Ito Y, Ehara Y, Zukeran A, IEEE Trans. Ind. Appl., 46(4), 1606, 2010
  38. Zukeran A, Ikeda Y, Ehara Y, Matsuyama M, Ito T, Takahashi T, Kawakami H, Takamatsu T, IEEE Trans. Ind. Appl., 35(2), 346, 1999
  39. Lee JB, Hwang JH, Bae BN, JSME Int. J., Ser. B: Fluids Thermal Engineering, 43(4), 602, 2000
  40. Pham CT, Kameda T, Toriba A, Hayakawa K, Environ. Pollut., 183, 175, 2013