Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3407-3416, 2016
Enhancement of NO absorption in ammonium-based solution using heterogeneous Fenton reaction at low H2O2 consumption
A novel NO removal system is designed, where NO is initially oxidized by .OH radicals from the decomposition of hydrogen peroxide (H2O2) over hematite and then absorbed by ammonium-based solution. According to the high performance liquid chromatography (HPLC) profile and the isopropanol injection experiments, the .OH radicals are proved to play a critical role in NO removal. The NO removal efficiency primarily depends on H2O2 concentration, gas hourly space velocity (GHSV), H2O2 feeding rate and reaction temperature, while the flue gas temperature slightly affects the NO removal efficiency. The low H2O2 consumption makes this system a promising technique in NO removal process using wet-method. The evolution of catalyst in reaction is analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The nitrite ion and nitrate ion in aqueous solution are detected by the continuous phase flow analyzer. Finally, the macrokinetic parameters of the NO oxidation are obtained by using the initial rate method.
[References]
  1. Jia Y, Du D, Zhang X, Ding X, Zhong O, Korean J. Chem. Eng., 30(9), 1735, 2013
  2. Jin DS, Deshwal BR, Park YS, Lee HK, J. Hazard. Mater., 135(1-3), 412, 2006
  3. Zhao Y, Liu F, Guo T, Zhao Y, Science in China Series E: Technological Sciences, 52, 1768 (2009).
  4. Liu YX, Zhang J, Sheng CD, Zhang YC, Zhao LA, Chem. Eng. J., 162(3), 1006, 2010
  5. Zhang J, Zhang R, Chen X, Tong M, Kang WZ, Guo SP, Zhou YB, Lu J, Ind. Eng. Chem. Res., 53(15), 6450, 2014
  6. Zhao Y, Han YH, Guo TX, Ma TZ, Energy, 67, 652, 2014
  7. Park HW, Choi S, Park DW, J. Hazard. Mater., 285, 117, 2015
  8. Zhao Y, Hao RL, Qi M, Chem. Eng. J., 269, 159, 2015
  9. Zhao Y, Hao RL, Guo Q, Feng YN, Fuel Process. Technol., 137, 8, 2015
  10. Sada E, Kumazawa H, Kudo I, Kondo T, Chem. Eng. Sci., 33, 315, 1978
  11. Chu H, Chien TW, Li S, Sci. Total Environ., 275, 127, 2001
  12. Wei J, Luo Y, Yu P, Cai B, Tan H, J. Ind. Eng. Chem., 15(1), 16, 2009
  13. Fennv H, Qin Z, Environ. Pollut., 5, 004, 2012
  14. Fang P, Cen CP, Wang XM, Tang ZJ, Tang ZX, Chen DS, Fuel Process. Technol., 106, 645, 2013
  15. Chung L, Huang HS, Phoenix-nasa low temperature multipollutant (no x, so x & mercury) control system for fossil fuel combustion, Challenges of power engineering and environment, Springer, 710 (2007).
  16. Pouran SR, Raman AAA, Daud WMAW, J. Clean Prod., 64, 24, 2014
  17. Pereira MC, Oliveira LCA, Murad E, Clay Min., 47, 285, 2012
  18. Ding J, Zhong Q, Zhang SL, J. Mol. Catal. A-Chem., 393, 222, 2014
  19. Ding J, Zhong Q, Zhang SL, Song FJ, Bu YF, Chem. Eng. J., 243, 176, 2014
  20. Ding J, Zhong Q, Zhang SL, Cai W, J. Hazard. Mater., 283, 633, 2015
  21. Huang XM, Ding J, Zhong Q, Appl. Surf. Sci., 326, 66, 2015
  22. Liu YX, Zhang J, Pan JF, Tang AK, Energy Fuels, 26(9), 5430, 2012
  23. Liu YX, Zhang J, Wang ZL, Chem. Eng. J., 197, 468, 2012
  24. Liu YX, Zhang J, Yin YS, AIChE J., 61(4), 1322, 2015
  25. Lu Y, Xiong Y, Gao M, Proceedings of the CSEE, 28, 44, 2008
  26. Kwan WP, Voelker BM, Environ. Sci. Technol., 37, 1150, 2003
  27. Pham ALT, Lee C, Doyle FM, Sedlak DL, Environ. Sci. Technol., 43, 8930, 2009
  28. Lousada CM, Jonsson M, J. Phys. Chem. C, 114, 11202, 2010
  29. Milne L, Stewart I, Bremner DH, Ultrason. Sonochem., 20, 984, 2013
  30. Rendon JL, Serna CJ, Clay Min., 16, 375, 1981
  31. Wolska E, Zeitschrift fur Kristallographie-Crystalline Materials, 154, 69, 1981
  32. Gao CX, Liu QF, Xue DS, J. Mater. Sci. Lett., 21, 1781, 2002
  33. Li DAN, Wang X, Xiong G, Lu L, Yang X, Wang XIN, J. Mater. Sci. Lett., 16, 493, 1997
  34. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y, Acc. Chem. Res., 46, 1816, 2013
  35. Guo RT, Hao JK, Pan WG, Yu YI, Sep. Sci. Technol., 2014
  36. Zhao Y, Wen XY, Guo TX, Zhou JH, Fuel Process. Technol., 128, 54, 2014
  37. Fang P, Cen CP, Tang ZX, Zhong PY, Chen DS, Chen ZH, Chem. Eng. J., 168(1), 52, 2011
  38. Dawei Q, Jichao Z, Menglong G, Yuanquan X, Proceedings of the CSEE (2013).
  39. Guo TX, Experimental investigation on simultaneous removal of so 2 and no x in liquid phase by new-type complex absorbent, J. North China Electr. Power Univ., 69 (2011).
  40. Zhao Y, Hao RL, Zhang P, Zhou SH, Energy Fuels, 28(10), 6502, 2014