Issue
Korean Journal of Chemical Engineering,
Vol.33, No.12, 3337-3342, 2016
Minimizing axial dispersion in narrow packed column using superhydrophobic wall
The scope of minimizing dispersion in narrow packed column using superhydrophobic (SH) wall is assessed experimentally with implications in analytical techniques such as liquid chromatography. The study includes devising a packed column (7-19 mm) with lotus leaf pasted on the inner wall and establishing a gravity driven flow through it. The flow dispersion is characterized based on the residence time distribution study of the column. The results are compared against similar flow through smooth packed column. Experimental results reveal the influence of two factors: column diameter as well as the wall features, superhydrophobic or smooth. For similar surface features, the axial dispersion reduces with decrease in column diameter due to the increase in voidage, which leads to plug flow. For the same diameter, between smooth and superhydrophobic, effects of slip in the latter reduce the dispersion significantly. Thus, the introduction of superhydrophobic narrow columns can play a crucial role in minimizing dispersion in analytical techniques.
[References]
  1. Dittman MM, Rozing GP, J. Chromatogr. A, 744, 63, 1996
  2. Taylor G, Proc. R. Soc. Lond. A., 219, 186, 1953
  3. Aris R, Proc. R. Soc. Lond. A., 235, 67, 1956
  4. Brenner H, Edwards DA, Macrotransport Processes, Butterworth-Heinemann, Boston, MA (1993).
  5. Doshi MR, Daiya PM, Gill WN, Chem. Eng. Sci., 33, 795, 1978
  6. Chatwin PC, Sullivan PJ, J. Fluid Mech., 120, 347, 1982
  7. Dutta D, Leighton DT, Anal. Chem., 73, 504, 2001
  8. Ajdari A, Bontoux N, Stone HA, Anal. Chem., 78, 387, 2006
  9. Yan X, Wang Q, Bau HH, J. Chromatogr. A, 1217, 1332, 2010
  10. Gas B, Kenndler E, Electrophoresis, 21(18), 3888, 2000
  11. Bhaumik SK, Roy R, Chakraborty S, DasGupta S, Sens. Actuators B-Chem., 193, 288, 2013
  12. Zholkovskij EK, Masliyah JH, Anal. Chem., 76, 2708, 2004
  13. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB, Adv. Mater., 14(24), 1857, 2002
  14. Sun T, Feng L, Gao X, Jiang L, Acc. Chem. Res., 38, 644, 2005
  15. Roach R, Shirtcliffe NJ, Newton MI, Soft Matter, 4, 224, 2008
  16. Bhusan B, Jung YC, Koch K, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 367, 1631, 2009
  17. Cassie ABD, Baxter S, Transactions of the Faraday Society, 40, 546, 1944
  18. Choi CH, Kim CJ, Phys. Rev. Lett., 96, 066001, 2006
  19. Joseph P, Cottin-Bizonne C, Benoit JM, Ybert C, Journet C, Tabeling P, Bocquet L, Phys. Rev. Lett., 97, 156104, 2006
  20. Lee C, Choi CH, Kim CJ, Phys. Rev. Lett., 101, 064501, 2008
  21. Pihl M, Jonnson B, Skepo M, MicrofluidNanofluid., 17, 341, 2014
  22. Lauga E, Stone HA, J. Fluid Mech., 489, 55, 2003
  23. Saha T, Kumar S, Bhaumik SK, Sens. Actuators B-Chem., 240, 468, 2017
  24. Ng CO, MicrofluidNanofluid., 10, 47, 2011
  25. Ng CO, Zhou Q, Phys. Fluids, 24, 112002, 2012
  26. Dey R, Kiran RM, Bhandaru N, Mukherjee R, Chakraborty S, Soft Matter, 10, 3451, 2014
  27. Bhaumik SK, Kannan A, DasGupta S, Chem. Eng. Sci., 134, 251, 2015
  28. Foggler HS, Elements of Chemical Reaction Engineering, 4th Ed., Pearson Education, U.S.A. (2006).