Issue
Korean Journal of Chemical Engineering,
Vol.33, No.7, 2018-2026, 2016
Highly efficient Al-doped ZnO : Ag catalyst for RB19 photocatalytic degradation: Microwave-assisted synthesis and characterization
ZnO: Ag.Al nano-catalyst was synthesized by microwave technique. The characterization and evaluation of this semiconductor catalyst was examined in contrast with ZnO and ZnO:Ag by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Thermodynamic study of combustion synthesis showed the reaction temperature for ZnO: Ag·Al samples decreased to 481.48 ℃ compared to ZnO that is 1141 ℃. Tauc’s plot was used to calculate the band gap of samples and the location of absorption edge was found at 380 nm. Different molar ratios of Ag and Al were examined to find the best activity of catalyst. In this study, reactive blue 19 (RB19) as a water pollution was used to find the efficiency of catalyst, and the effect of pH on the reaction was studied in a batch reactor under UV radiation. Also, the recyclability experiments confirm that the synthesized ZnO: Ag·Al (7mole% Ag and 3% mole Al) has responsible photocatalytic activity as compared to ZnO at a similar operating condition.
[References]
  1. Karunakaran C, Rajeswari V, Gomathisankar P, Superlattices Microstruct., 50, 234, 2011
  2. Ahmad M, Ahmed E, Zhang YW, Khalid NR, Xu JF, Ullah M, Hong ZL, Curr. Appl. Phys., 13(4), 697, 2013
  3. Sharma RK, Patel S, Pargaien KC, Adv. Nat. Sci: Nanosci. Nanotechnol, 3, 035005, 2012
  4. Wu CH, J. Hazard. Mater., 153(3), 1254, 2008
  5. Karunakaran C, Rajeswari V, Gomathisankar P, Solid State Sci., 13, 923, 2011
  6. Burunkaya E, Kiraz N, Kesmez O, Camurlu HE, Asilturk M, Arpac E, Sol-Gel Sci. Technol., 55, 171, 2010
  7. Mondal S, Bhattacharyya SR, Mitra P, Physics, 80, 315, 2013
  8. Wang L, Hu Q, Li Z, Guo J, Li Y, Mater. Lett., 79, 277, 2012
  9. Iqbal J, Jan T, Ismail M, Ahmad N, Arif A, Khan M, Adil M, Arshad A, Ceram. Int., 40, 7487, 2013
  10. Lia G, Zhua X, Tanga X, Songa W, Yanga Z, Daia J, Suna Y, Panb X, Daib S, J. Alloy. Compd., 509, 4816, 2011
  11. Ameen S, Akhtar MS, Seo HK, Kim S, Shik Y, Shin H, Chem. Eng., 187, 351, 2012
  12. Xie W, Li Y, Sun W, Huang J, Xie H, Zhao X, J. Photochem. Photobiol. A-Chem., 216, 149, 2010
  13. Aydın C, Abd El-sadek MS, Zheng K, Yahia IS, Yakuphanoglu F, Opt. Laser Technol., 48, 447, 2013
  14. Son HJ, Jeon KA, Kim CE, Kim JH, Yoo KH, Lee SY, Opt. Laser Technol., 48, 447, 2013
  15. Simon Q, Barreca D, Bekermann D, Gasparotto A, Maccato C, Elisabetta, Gombac V, Fornasiero P, Lebedev OI, Turner S, Devi A, Fischer RA, Tendeloo GV, J. Hydrol. Eng., 36, 15527, 2011
  16. Mitra S, Sridharan K, Unnam J, Ghosh K, Thin Solid Films, 516(5), 798, 2008
  17. Ismail AA, El-Midany A, Abdel-Aal EA, El-Shall H, Mater. Lett., 59, 924, 2005
  18. Nehru LC, Swaminathan V, Sanjeeviraja C, Powder Technol., 226, 29, 2012
  19. Barin, Juliano S, Flores, Erico MM, Mesko, Marcia F, Mello, Paola A, Pereira, Juliana SF, Chapter 5 - Microwave-Induced Combustion. Microwave-Assisted Sample Preparation for Trace Element Analysis, 143 (2014).
  20. Subash B, Krishnakumar B, Swaminathan M, Shanthi M, Mater. Sci. Semicond. Process, 16, 1070, 2013
  21. Khan I, Khan S, Nongjai R, Ahmed H, Khan W, Opt. Mater., 35, 1189, 2013
  22. Reddya AJ, Kokilab MK, Nagabhushanac H, Raod JL, Nagabhushanae BM, Shivakumaraf C, Chakradharg RPS, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 79, 476, 2011
  23. Prabhu YT, Rao KV, Kumar VSSK, Adv. Nano., 2, 45, 2013
  24. Sivasankari J, Sankar S, Selvakumar S, Vimaladevi L, Synthesis RK, Mater. Chem. Phys., 143, 1528, 2013
  25. Rasouli S, Moeen SJ, J. Alloy. Compd., 509, 1915, 2011
  26. Ekambarama S, Iikubo Y, Kudo A, J. Alloy. Compd., 433, 237, 2007
  27. Ianos R, Lazau I, Pacurariu C, Sfirloaga P, Mater. Chem. Phys., 129(3), 881, 2011
  28. Hwang CC, Wu TY, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 111, 197, 2004
  29. Sharma SK, Pitale SS, Malik MM, Dubey RN, Qureshi MS, Ojha S, J. Phys. Condens. Matter, 405, 866, 2010
  30. Tarwal NL, Jadhav PR, Vanalakar SA, Kalagi SS, Pawar RC, Shaikh JS, Mali SS, Dalavi DS, Shinde PS, Patil PS, Powder Technol., 208(1), 185, 2011
  31. Antony RP, Mathews T, Ajikumar PK, Krishna DN, Dash S, Tyagi AK, Mater. Res. Bull., 47(12), 4491, 2012
  32. Chain B, Wang X, Cheng S, Zhou H, Zhang F, Ceram. Int., 40, 429, 2014
  33. Pal B, Dhara S, Giri PK, Sarkar D, J. Alloy. Compd., 615, 378, 2014
  34. Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF, Chem. Phys. Lett., 409(4-6), 208, 2005
  35. Mohan R, Krishnamoorthy K, Kim SJ, Chem. Phys. Lett., 539-540, 83, 2012
  36. Divband B, Khatamian M, Eslamian GRK, Darbandi M, Appl. Surf. Sci., 284, 80, 2013
  37. Aprilia A, Wulandari P, Suendo V, Herman, Hidayat R, Fujii A, Ozaki M, Sol. Energy Mater. Sol. Cells, 111, 181, 2013
  38. Sahu DR, Lin SY, Huang JL, Sol. Energy Mater. Sol. Cells, 91(9), 851, 2007
  39. Shahla MN, Tabatabaei SM, Young Researchers and Elite Club, 2, 2000
  40. Gomez GA, Veldman MB, Zhao Y, Burgess S, Lin S, PLoS ONE, 4(3), 2009
  41. Puma GL, Chem. Eng. Res. Des., 83(A7), 820, 2005
  42. Housecroft CE, Sharpe AG, Inorganic Chemistry (2nd Ed.). Prentice Hall. P.173 ISBN 978-0130399137 (2004).
  43. Ba-Abbad M, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K, J. Alloy. Compd., 550, 63, 2013
  44. Ayanda OS, Fatoki OS, Adekola FA, Ximbaa BJ, Marine Pollution Bulletin, 72, 222, 2013
  45. Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A, Mater. Sci. Eng., 4, 2235, 2013
  46. Pyne S, Sahoo GP, Bhui DK, Bar H, Sarkar P, Samanta S, Maity A, Misra A, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 93, 100, 2012