Issue
Korean Journal of Chemical Engineering,
Vol.33, No.7, 1999-2006, 2016
Kriging models for forecasting crude unit overhead corrosion
Crude unit overhead corrosion is a major issue in the refinery field. However, the corrosion models in the literature are difficult to apply to real refinery processes due to the characteristics of corrosion. We propose a Kriging model, an advanced statistical tool for geostatistics, to forecast the corrosion rate in a real refinery plant. Instead of spatial coordinates, the proposed model employs the non-spatial coordinates of six key corrosion variables: H2S, Cl., Fe2+, NH3, pH, and flowrate. The Kriging model is compared with two well-known forecasting models, multiple linear regression and an artificial neural network. To overcome the insufficiency of the number of data sets measured in the plant to use the six non-spatial coordinates, the significance probability is applied to reduce the dimensions from six to four. Among all the developed models in this paper, the Kriging model with four corrosion variables showed the best forecasting performance.
[References]
  1. Corrosion Costs and Preventive Strategies in the United States, Report FHWARD-01-156, U.S. Federal Highway Administration (FHWA), Washington, DC (2002).
  2. Nesic S, Corrosion Sci., 49, 4308, 2007
  3. De Waard C, Milliams DE, Corrosion, 31, 177, 1975
  4. De Waard C, Lotz U, Dugstad A, In Corrosion 95, NACE International, Houston (1995).
  5. Hellevik SG, Langen I, Sorensen JD, Int. J. Pressure Vessels Piping, 76, 527, 1999
  6. Nesic S, Postlethwaite J, Olsen S, Corrosion, 52, 280, 1996
  7. Sun W, Nesic S, Corrosion, 65, 291, 2009
  8. Sun W, Nesic S, Corrosion, 64, 334, 2008
  9. Kim S, Kim J, Moon I, Ind. Eng. Chem. Res., 50(22), 12626, 2011
  10. Song FM, Electrochim. Acta, 55(3), 689, 2010
  11. Gruber T, Scharler R, Obernberger I, Biomass Bioenerg., 79, 145, 2015
  12. Dhanapal A, Boopathy SR, Balasubramanian V, Mater. Des., 32, 5066, 2011
  13. Khadom AA, Korean J. Chem. Eng., 30(12), 2197, 2013
  14. Kim J, Tak K, Moon I, Ind. Eng. Chem. Res., 51(30), 10191, 2012
  15. Singer M, Brown B, Camacho A, Nesic S, Corrosion, 67, 015004, 2011
  16. Kvarekval J, Nyborg R, Choi H, In Corrosion 2003, NACE International, Houston (2003).
  17. Lee KJ, A mechanistic modelling of CO2 corrosion of mild steel in the presence of H2S, Ph.D. Dissertation, Ohio University, Athens, OH (2004).
  18. Kim J, Lim W, Lee Y, Kim S, Park SR, Suh SK, Moon I, Ind. Eng. Chem. Res., 50(13), 8272, 2011
  19. Journel AG, Huijbregts CJ, Mining Geostatistics, 5th Ed., Academic Press, London (1991).
  20. Lang YD, Zitney SE, Biegler LT, Comput. Chem. Eng., 35(9), 1705, 2011
  21. De Oliveira MA, Possamai O, Valentina LVOD, Flesch CA, Expert Syst. Appl., 40, 272, 2013
  22. Movagharnejad K, Mehdizadeh B, Banihashemi M, Kordkheili MS, Energy, 36(7), 3979, 2011
  23. Song K, Lee S, Shin S, Lee HJ, Han C, Ind. Eng. Chem. Res., 53(13), 5539, 2014
  24. Satya EJ, Chandrakar N, Korean J. Chem. Eng., 33(4), 1318, 2016
  25. Cho SG, No KT, Goh EM, Kim JK, Shin JH, Joo YD, Seong S, Bull. Korean Chem. Soc., 26, 399, 2005