Issue
Korean Journal of Chemical Engineering,
Vol.33, No.6, 1799-1804, 2016
Enhanced activity of carbon-supported PdCo electrocatalysts toward electrooxidation of ethanol in alkaline electrolytes
Carbon-supported Pd and PdCo (1 : 2, 1 : 1, 2 : 1 and 3 : 1) catalysts were synthesized by chemical reduction with NaBH4. Their electrochemical properties were investigated by cyclic voltammetry, chronoamperometry and CO stripping voltammetry in alkaline electrolytes, and compared with commercial Pt/C and PtRu(1 : 1)/C catalysts. In electrochemical oxidation of ethanol in an alkaline electrolyte, marked improvements in the current density and onset potential were observed by incorporating Co into Pd/C to form PdCo/C alloy electrocatalysts. The best catalyst PdCo (1 : 1)/C showed performance superior to the commercial Pt/C or PtRu/C catalysts. It is shown that the incorporated Co facilitates the oxidation of strongly-adsorbed carbonaceous intermediate species on the surface of Pd by forming OH. group and reacts away the intermediates from Pd surface. Thus, PdCo(1 : 1)/C catalyst is a promising anode catalyst for direct ethanol fuel cells with alkaline electrolytes.
[References]
  1. Otomo J, Nishida S, Kato H, Nagamoto H, Oshima Y, ECS Trans., 16, 1275, 2008
  2. Youn DH, Han S, Bae G, Lee JS, Electrochem. Commun., 13, 806, 2011
  3. Ma L, Chu D, Chen RR, Int. J. Hydrog. Energy, 37(15), 11185, 2012
  4. Alcaide F, Alvarez G, Cabot PL, Grande HJ, Miguel O, Querejeta A, Int. J. Hydrog. Energy, 36(7), 4432, 2011
  5. Kakati N, Maiti J, Lee SH, Yoon YS, Int. J. Hydrog. Energy, 37(24), 19055, 2012
  6. Wei WT, Chen W, J. Power Sources, 204, 85, 2012
  7. Wei YC, Liu CW, Kang WD, Lai CM, Tsai LD, Wang KW, J. Electroanal. Chem., 660(1), 64, 2011
  8. Lim EJ, Kim HJ, Kim WB, Catal. Commun., 25, 74, 2012
  9. Lim EJ, Kim Y, Choi SM, Lee S, Noh Y, Kim WB, J. Mater. Chem. A, 3, 5491, 2015
  10. Almeida TS, Palma LM, Leonello PH, Morais C, Kokoh KB, De Andrade AR, J. Power Sources, 215, 53, 2012
  11. Feng YY, Liu ZH, Xu Y, Wang P, Wang WH, Kong DS, J. Power Sources, 232, 99, 2013
  12. Maiyalagan T, Scott K, J. Power Sources, 195(16), 5246, 2010
  13. Miecznikowski K, Kulesza PJ, J. Power Sources, 196(5), 2595, 2011
  14. Modibedi RM, Masombuka T, Mathe MK, Int. J. Hydrog. Energy, 36(8), 4664, 2011
  15. Ramulifho T, Ozoemena KI, Modibedi RM, Jafta CJ, Mathe MK, Electrochim. Acta, 59, 310, 2012
  16. Tang QW, Jiang LH, Jiang Q, Wang SL, Sun GQ, Electrochim. Acta, 77, 104, 2012
  17. Kim DS, Kim JH, Jeong IK, Choi JK, Kim YT, J. Catal., 290, 65, 2012
  18. Wang X, Xia Y, Electrochem. Commun., 10, 1644, 2008
  19. Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Rodriguez HG, Alvarez-Contreras L, Arriaga LG, J. Power Sources, 195(2), 461, 2010
  20. Serov A, Nedoseykina T, Shvachko O, Kwak C, J. Power Sources, 195(1), 175, 2010
  21. Yang J, Cheng CH, Zhou W, Lee JY, Liu Z, Fuel Cells, 10, 907, 2010
  22. Lim DH, Choi DH, Lee WD, Park DR, Lee HI, Electrochem. Solid State Lett., 10(5), B87, 2007
  23. Radmilovic V, Gasteiger HA, Ross PN, J. Catal., 154(1), 98, 1995
  24. Wang Y, Wang X, Li CM, Appl. Catal. B: Environ., 99(1-2), 229, 2010
  25. Kim DH, Woo SI, Yang OB, Appl. Catal. B: Environ., 26, 285, 2000
  26. Tang YW, Chen Y, Zhou P, Zhou YM, Lu LD, Bao JC, Lu TH, J. Solid State Chem., 14, 2077, 2010
  27. Zhang ZY, Xin L, Sun K, Li WZ, Int. J. Hydrog. Energy, 36(20), 12686, 2011