Issue
Korean Journal of Chemical Engineering,
Vol.33, No.6, 1767-1776, 2016
Dynamic modeling and simulation of reaction, slag ehavior, and heat transfer to water-cooling wall of shell entrained-flow gasifier
A mathematical model is developed to simulate a pilot Shell entrained-flow coal gasifier. Submodels of specific structures of the gasifier are established to simulate the complicated gasification process. The model includes the total energy conservation equation and mass conservation equations for the gas components, solid flow, and gas flow. It simulates the influence of the gasifier structure and dimensions and can calculate the effects of changing almost every important operation parameter, e.g., the syngas composition, gasification temperature, carbon conversion ratio, walllayer temperature, and slag mass flow rate. The model can predict the syngas composition under a limited residence time condition. Furthermore, it considers the heat transfer coefficient of each layer of the water wall to calculate its heat loss and temperature. Thus, the model also reflects the influence of performance parameters of the gasifier’s water wall. The slag mass flow rate on the wall is calculated using a slag submodel.
[References]
  1. Seo HK, Park S, Lee J, Kim M, Chung SW, Chung JH, Kim K, Korean J. Chem. Eng., 28(9), 1851, 2011
  2. Corman JC, Appl. Energy, 10, 243, 1982
  3. Beer JM, Prog. Energy Combust. Sci., 26, 301, 2000
  4. Buskies U, Appl. Therm. Eng., 16, 959, 1996
  5. Chen X, He MY, Spitsberg I, Fleck NA, Hutchinson JW, Evans AG, Wear, 256, 735, 2004
  6. Chen CX, Horio M, Kojima T, Chem. Eng. Sci., 55(18), 3861, 2000
  7. Chen CX, Horio M, Kojima T, Chem. Eng. Sci., 55(18), 3875, 2000
  8. Sha XZ, Chen YG, Cao JG, Yang YM, Ren DQ, Fuel, 69, 656, 1990
  9. Govind R, Shah J, AIChE J., 79, 30, 1984
  10. Monaghan RFD, Ghoniem AF, Fuel, 91(1), 61, 2012
  11. Sun B, Liu YW, Chen X, Zhou QL, Su M, Fuel Process. Technol., 92(8), 1418, 2011
  12. Merrick D, Fuel, 62, 534, 1983
  13. Jones WP, Lindstedt RP, Combust. Flame, 73, 233, 1988
  14. Westbrook CK, Dryer FL, Combust. Sci. Technol., 27, 31, 1981
  15. Chase MW, NIST-JANAF Thermochemical Tables, 4th Ed., National Institute of Standards and Technology, Gaithersburg, MD (1998).
  16. Wen CY, Chaung TZ, Ind. Eng. Chem. Process Des. Dev., 18(4), 684, 1979
  17. Lee BH, Kim SI, Kim SM, Oh DH, Gupta S, Jeon CH, Korean J. Chem. Eng., 33(1), 147, 2016
  18. Shannon GN, Rozelle PL, Pisupati SV, Sridhar S, Fuel Process. Technol., 89(12), 1379, 2008
  19. Montagnaro F, Salatino P, Combust. Flame, 157(5), 874, 2010
  20. Urbain G, Cambier F, Deletter M, Anseau MR, Trans. J. British Ceram. Soc., 80, 139, 1981
  21. White FM, Fluid mechanics, 2nd Ed., McGraw-Hill, New York, NY (1986).
  22. Incropera FP, DeWitt DP, Fundamentals of heat and mass transfer, 5th Ed., Wiley, New York, NY (2002).
  23. Smoot LD, Brown BW, Fuel, 66, 1249, 1987
  24. Gazzani M, Manzolini G, Macchi E, Ghoniem AF, Fuel, 104, 822, 2013
  25. De Graaf JD, Shell coal gasification technology, Lecture, Technische Universiteit Eindhoven (2011).
  26. Higman C, van der Burgt M, Gasification, 2nd Ed., Elsevier Gulf Professional Publishing, Burlington, MA (2008). ISBN: 978-0-7506-8528-3.
  27. Steiner D, Taborek J, Heat Transfer Eng., 27, 43, 1992
  28. Cooperative Research Centre for Coal in Sustainable Development (CCSD), Research Report 80 (December 2007).