Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1749-1755, 2016
Generation of micro- and nano-bubbles in water by dissociation of gas hydrates
Gas hydrate crystals have a structure in which one molecule is enclathrated in a cage of water molecules. When such a crystal dissociates in water, each enclathrated molecule, generally vapor at standard temperature and pressure, directly dissolves into the water. After the solution is supersaturated, excess gas molecules from further dissociation start forming small bubbles called micro- and nano-bubbles (MNBs). However, it is difficult to identify such small bubbles dispersed in liquid because they are smaller than a microscope's optical resolution. To confirm the formation of MNBs after gas hydrate dissociation, we used a transmission electron microscope (TEM) to analyze freeze-fracture replicas of CH4-hydrate dissociation solution. The TEM images indicate the existence of MNBs in the solution, with a number concentration similar to that from a commercially supplied generator. Raman spectroscopic measurements on the CH4-hydrate dissociated solution were then used to confirm that the MNBs contain CH4 vapor, and to estimate experimentally the inner pressure of the CH4 MNBs. These results suggest that the dissociation of gas hydrate crystals in water is a simple, effective method to obtain MNB solution. We then discuss how such MNBs may play a key role in the memory effect of gas-hydrate recrystallization.
[References]
  1. Oshita S, Uchida T, Basic Characterization of Nanobubbles and Their Potential Application, in “Bio-Nanotechnology: A Revolution in Biomedical Sciences, & Human Health (Eds. by Bagchi D, Bagchi M, Moriyama H, Shahidi F)”, Chap 29, Wiley, 506-516 (2013).
  2. Tsuge H, The latest technology on microbubbles and nanobubbles (in Japanese), in Maikurobaburu no tokusei (Special characteristics of microbubbles), Chap. 2, Tokyo, CMC, 15-30 (2007).
  3. Clift R, Grace JR, Weber ME, Bubbles, Drops and Particles, Mineola, Dover Pub. (2005).
  4. Ushikubo FY, Fundamental studies on the state of water with the generation of micro and nano-bubbles (PhD thesis), Univ Tokyo, (2010).
  5. Ljunggren S, Eriksson JC, Colloids Surf. A: Physicochem. Eng. Asp., 129-130, 151, 1997
  6. Takahashi M, Application to the agricultural and food fields of the microbubbles and nanobubbles (in Japanese), Food Technology (FOO-TECH) Forum, 2006 Japanese Society of Agricultural Machinery (JSAM) Symposium, 24-31 (2006).
  7. Switkes M, Ruberti JW, Appl. Phys. Lett., 48, 4759, 2004
  8. Dressaire E, Bee R, Lips A, Stone HA, Science, 320, 1198, 2008
  9. Ohgaki K, Khanh NQ, Joden Y, Tsuji A, Nakagawa T, Chem. Eng. Sci., 65(3), 1296, 2010
  10. Uchida T, Oshita S, Ohmori M, Tsuno T, Soejima K, Shinozaki S, Take Y, Misuda K, Nanoscale Res. Lett., 6, 295, 2011
  11. Liu S, Oshita S, Makino Y, Wang Q, Kawagoe Y, Uchida T, ACS Sustainable Chemistry & Engineering, In Press.
  12. Sloan ED, Hydrate Engineering, SPE monograph 21, Richardson, TX: SPE Inc. (2000).
  13. Mimachi H, Takeya S, Yoneyama A, Hyodo K, Takeda T, Gotoh Y, Murayama T, Chem. Eng. Sci., 118, 208, 2014
  14. Kurihara M, Sato A, Ouchi H, Narita H, Masuda Y, Saeki T, Fujii T, SPE Reserv. Eng., 12, 477, 2009
  15. Masuda Y, Nagakubo S, Satoh M, Uchida T, Methane Hydrates, in World Scientific Handbook of Energy, Chapter 10, World Scientific Pub. Co., In Press.
  16. Parent JS, Bishnoi PR, Chem. Eng. Commun., 144, 51, 1996
  17. Takeya S, Hori A, Hondoh T, Uchida T, J. Phys. Chem. B, 104(17), 4164, 2000
  18. Sloan ED, Koh CA, Clathrate Hydrate of Natural Gases, 3rd Ed., Boca Raton, FL, CRC Press (2007).
  19. Rodger PM, Ann. N.Y. Acad. Sci., 912, 474, 2000
  20. Bagherzadeh SA, Englezos P, Alavi S, Ripmeester JA, J. Chem. Thermodyn., 44(1), 13, 2012
  21. Bagherzadeh SA, Alavi S, Ripmeester JA, Englezos P, Fluid Phase Equilib., 358, 114, 2013
  22. Bagherzadeh SA, Alavi S, Ripmeester JA, Englezos P, J. Chem. Phys., 142, 214701, 2015
  23. Yagasaki T, Matsumoto M, Andoh Y, Okazaki S, Tanaka H, J. Phys. Chem. B, 118(7), 1900, 2014
  24. Lin F, Sum AK, Bodnar RJ, J. Raman Spectrosc., 38, 1510, 2007
  25. Uchida T, Hirano T, Ebinuma T, Narita H, Gohara K, Mae S, Matsumoto R, AIChE J., 45(12), 2641, 1999
  26. Uchida T, Nagayama M, Shibayama T, Gohara K, J. Cryst. Growth, 299(1), 125, 2007
  27. Sum AK, Burruss RC, Sloan ED, J. Phys. Chem. B, 101(38), 7371, 1997
  28. Uchida T, Okabe R, Gohara K, Mae S, Seo Y, Lee H, Takeya S, Nagao J, Ebinuma T, Narita H, Can. J. Phys., 81, 359, 2003
  29. Katsuki D, Ohmura R, Ebinuma T, Narita H, J. Appl. Phys., 104, 083514, 2008
  30. Jpn. Soc. Mech. Eng., JSME Data book: Thermophysical Properties of Fluids, Maruzen, Tokyo, 255 (1983).
  31. Khosharay S, Varaminian F, Int. J. Refrigeration, 47, 26, 2014
  32. International Chemical Safety Cards ICSC0291.