Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1712-1719, 2016
One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor
The recovery of methane gas from methane hydrate bearing sediments was investigated by using a continuous stream of a CO2 and N2 gas mixture. A long cylindrical high-pressure reactor was designed to demonstrate the recovery of methane from methane hydrate bearing sediments, and the injection rate of the gas mixture was controlled to monitor the amount of recovered methane from methane hydrates. The recovery efficiency of methane gas from methane hydrates is inversely proportional to the flow rate of the CO2 and N2 gas mixture. Methane hydrates were synthesized by using two different sediments, having particle size distributions of 75 to 150 μm and 45 to 90 μm with the same porosity, and the recovery efficiency of methane from methane hydrates was also monitored. We confirmed that there is no significant difference in the replacement characteristics by using these two different sediments. Horizontal and vertical flows of the CO2 and N2 gas mixture were applied to monitor the effect of flow direction on replacement characteristics. We also confirmed that a similar amount of methane was recovered in horizontal and vertical flows of the CO2 and N2 gas mixture at the same flow rate. The present study may help in establishing the process variables for recovering methane gas from methane hydrate bearing sediments in offshore conditions.
[References]
  1. Jeffrey GA, Inclusion Compounds, Vol. 1 (eds. Atwood JL, Davies JED, MacNicol DD), Academic, London (1984).
  2. Sloan ED, Koh CA, Clathrate hydrates of natural gases, CRC Press Llc. (2008).
  3. Boswell R, Collett TS, Energy Environ. Sci., 4(4), 1206, 2011
  4. Kvenvolden KA, Natural gas hydrate: Background and history of discovery, In Natural Gas Hydrate, Springer (2003).
  5. Collett TS, AAPG Bull., 86(11), 1971, 2002
  6. Moridis GJ, Sloan ED, Energy Conv. Manag., 48(6), 1834, 2007
  7. Makogon YF, J. Natural Gas Sci. Eng., 2(1), 49, 2010
  8. Makogon Y, Holditch S, Makogon T, J. Petroleum Sci. Eng., 56(1), 14, 2007
  9. Lee SY, Holder GD, Fuel Process. Technol., 71(1), 181, 2001
  10. Collett TS, Geotimes, 49, 24, 2004
  11. Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671, 2005
  12. P. L. McGuire Methane hydrate gas production: An assessment of conventional production technology as applied to hydrate gas recovery, Los Alamos National Laboratory, Los Alamos (1981).
  13. Holder GD, Angert PF, In Simulation of gas production from a reservoir containing both gas hydrates and free natural gas, SPE annual technical conference and exhibition, Society of Petroleum Engineers (1982).
  14. Ohgaki K, Takano K, Sangawa H, Matsubara T, Nakano S, J. Chem. Eng. Jpn., 29(3), 478, 1996
  15. Hirohama S, Shimoyama Y, Wakabayashi A, Tatsuta S, Nishida N, J. Chem. Eng. Jpn., 29(6), 1014, 1996
  16. Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA, Angew. Chem.-Int. Edit., 42(41), 5048, 2003
  17. Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA, Stud. Surf. Sci. Catal., 153, 495, 2004
  18. Ota M, Saito T, Aida T, Watanabe M, Sato Y, Smith RL, Inomata H, AIChE J., 53(10), 2715, 2007
  19. Geng CY, Wen H, Zhou H, J. Phys. Chem. A, 113(18), 5463, 2009
  20. Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, P. Natl. Acad. Sci. USA, 103(34), 12690, 2006
  21. Shin K, Park Y, Cha MJ, Park KP, Huh DG, Lee J, Kim SJ, Lee H, Energy Fuels, 22(5), 3160, 2008
  22. Koh DY, Kang H, Kim DO, Park J, Cha M, Lee H, ChemSusChem, 5(8), 1443, 2012
  23. Cha M, Shin K, Lee H, Moudrakovski IL, Ripmeester JA, Seo Y, Environ. Sci. Technol., 49(3), 1964, 2015
  24. Koh DY, Ahn YH, Kang H, Park S, Lee JY, Kim SJ, Lee J, Lee H, AIChE J., 61(3), 1004, 2015
  25. Dornan P, Alavi S, Woo T, J. Chem. Phys., 127(12), 124510, 2007
  26. Schoderbek D, Martin KL, Howard J, Silpngarmlert S, K, Hester, In North Slope hydrate fieldtrial: CO2/CH4 exchange, OTC Arctic Technology Conference, Offshore Technology Conference (2012).