Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1653-1658, 2016
Plasma treatment of multi-walled carbon nanotubes for lipase immobilization
Plasma-modified multiwalled carbon nanotubes (MWNTs) were used as a support to immobilize lipase. The effects of vacuum plasma treatment power, vacuum plasma treatment time, immobilization temperature, immobilization time, and initial protein concentration of the lipase on the amount of lipase immobilized and on the subsequent activity of the immobilized lipase were investigated. The results showed that the adsorption capacity of the plasma-modified MWNTs could reach 0.15 g/g and that the maximal enzyme activity of the immobilized lipase was 520U/g under optimized conditions. Fourier transform infrared (FTIR) analysis and transmission electron microscopy (TEM) were used to characterize the properties of the plasma-modified MWNTs and plasma-modified MWNTslipase, and the results showed that the lipase was successfully immobilized on the plasma-modified MWNTs. Also, the MWNTs-lipase produced an esterification rate of approximately 47% in the synthesis of polyethylene glycol (PEG)-aliphatic esters.
[References]
  1. Jaeger KE, Eggert T, Curr. Opin. Biotechnol., 13, 390, 2002
  2. Gupta R, Gupta N, Rathi P, Appl. Microbiol. Biotechnol., 64(6), 763, 2004
  3. Brady D, Jordaan J, Biotechnol. Lett., 31(11), 1639, 2009
  4. Zou Y, Xiang C, Sun L, Xu F, Biosens. Bioelectron., 23, 1010, 2008
  5. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S, Microporous Mesoporous Mater., 44, 755, 2001
  6. Kim J, Grate JW, Wang P, Chem. Eng. Sci., 61(3), 1017, 2006
  7. Chiou SH, Wu WT, Biomaterials, 25, 197, 2004
  8. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA, J. Am. Chem. Soc., 125(7), 1684, 2003
  9. Wang L, Wei L, Chen Y, Jiang R, J. Biotechnol., 150, 57, 2010
  10. Feng W, Ji P, Biotechnol. Adv., 29, 889, 2011
  11. Thostenson ET, Ren ZF, Chou TW, Compos. Sci. Technol., 61, 1899, 2001
  12. Coleman JN, Khan U, Blau WJ, Gun’Ko YK, Carbon, 44, 1624, 2006
  13. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ, Adv. Mater., 15(5), 353, 2003
  14. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB, Science, 298, 2361, 2002
  15. Wang J, Electroanalysis, 17, 7, 2005
  16. Wang J, Musameh M, Lin YH, J. Am. Chem. Soc., 125(9), 2408, 2003
  17. Wang YB, Iqbal Z, Malhotra SV, Chem. Phys. Lett., 402(1-3), 96, 2005
  18. Guldi DM, Rahman GMA, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M, J. Am. Chem. Soc., 127(27), 9830, 2005
  19. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS, Langmuir, 20(26), 11594, 2004
  20. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF, Electrochem. Commun., 5, 408, 2003
  21. Wang SG, Zhang Q, Wang RL, Yoon SF, Ahn J, Yang DJ, Tian JZ, Li JQ, Zhou Q, Electrochem. Commun., 5, 800, 2003
  22. Merkoci A, Pumera M, Llopis X, Perez B, Valle MD, Alegret S, Trac-Trend. Anal. Chem., 24, 826, 2005
  23. Karousis N, Tagmatarchis N, Tasis D, Chem. Rev., 110(9), 5366, 2010
  24. Liu P, Eur. Polym. J., 41, 2693, 2005
  25. Tasis D, Tagmatarchis N, Bianco A, Prato M, Chem. Rev., 106(3), 1105, 2006
  26. Eitan A, Jiang KY, Dukes D, Andrews R, Schadler LS, Chem. Mater., 15, 3198, 2003
  27. Aronsson BO, Lausmaa J, Kasemo B, J. Biomedical Mater., 35, 49, 1997
  28. Shenton MJ, Stevens GC, J. Phys. D-Appl. Phys., 34, 2761, 2001
  29. Cao LQ, Curr. Opin. Chem. Biol., 9, 217, 2005
  30. Bradford MM, Anal. Biochem., 72, 248, 1976
  31. de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcantara AR, J. Mol. Catal. B-Enzym., 11, 657, 2001
  32. Vorhaben T, Boettcher D, Jasinski D, Menyes U, Brueser V, Schroeder K, Bornscheuer UT, Chemcatchem., 2, 992, 2010
  33. Kumar A, Gross RA, Biomacromolecules, 1(1), 133, 2000
  34. Wu X, Zhang Y, Wu C, Wu H, T. Nonferr. Metal. Soc., 221, S162, 2012
  35. Rastian Z, Khodadadi AA, Vahabzadeh F, Bortolini C, Dong M, Mortazavi Y, Mogharei A, Naseh MV, Guo Z, Biochem. Eng. J., 90, 16, 2014