Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1620-1628, 2016
Phenol decomposition in water cathode of DC atmospheric pressure discharge in air
We studied phenol decomposition in aqueous solution under the action of DC discharge at atmospheric pressure in air. The decomposition efficiency was 0.017 molecules per 100 eV. When the kinetics of forming destruction products was studied in detail, the peculiarities of air plasma action were revealed for the first time. Plasma action not only results in the formation of oxygen-containing products, which are usually formed under oxygen plasma action (hydroxyhenols, carboxylic acids, aldehydes), but also the formation of nitro phenols. The treatment is accompanied by hydrogen peroxide formation, a pH decrease, and nitric and nitrous acids formation. We also discussed the possible mechanism of the processes and the role of some active species in chemical transformations after determining some parameters of the discharge.
[References]
  1. Grabowski LR, van Veldhuizen EM, Pemen AJM, Rutgers WR, Plasma Chem. Plasma Process., 26(1), 3, 2006
  2. Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q, Plasma Sources Sci. Technol., 12, 533, 2003
  3. Tomizawa S, Tezuka M, Plasma Chem. Plasma Process., 27(4), 486, 2007
  4. Lukes P, Locke BR, J. Phys. D-Appl. Phys., 38, 4074, 2005
  5. Grymonpre DR, Sharma AK, Finney WC, Locke BR, Chem. Eng. J., 82(1-3), 189, 2001
  6. Bobkova ES, Grinevich VI, Ivantsova NA, Rybkin VV, Plasma Chem. Plasma Process., 32(1), 97, 2012
  7. Qu GZ, Lu N, Li J, Wu Y, Li GF, Li D, J. Hazard. Mater., 172(1), 472, 2009
  8. Njoyim E, Ghogomu P, Laminsi S, Nzali S, Doubla A, Brisset JL, Ind. Eng. Chem. Res., 48(22), 9773, 2009
  9. Piskarev IM, Technical Physics, 44, 53, 1999
  10. Janca J, Kuzmin S, Maximov A, Titova J, Czernichowski A, Plasma Chem. Plasma Process., 19(1), 53, 1999
  11. Jiang B, Zheng JT, Qiu S, Wu MB, Zhang QH, Yan ZF, Xue QZ, Chem. Eng. J., 236, 348, 2014
  12. Tatarova E, Bundaleska N, Sarette JP, Ferreira CM, Plasma Sources Sci. Technol., 23, 063002, 2014
  13. Bobkova ES, Ivanova ES, Nevedomyi RA, Sungurova AV, High Energy Chemistry, 48, 346, 2014
  14. Bobkova ES, Krasnov DS, Sungurova AV, Shishkina AI, Shikova TG, High Energy Chemistry, 47, 53, 2013
  15. Yan JH, Du CM, Li XD, Cheron BG, Ni MJ, Cen KF, Plasma Chem. Plasma Process., 26(1), 31, 2006
  16. Eisenberg G, Ind. Eng. Chem. Anal. Ed., 15, 327, 1943
  17. Verreycken T, Schram DC, Leys C, Bruggeman P, Plasma Sources Sci. Technol., 19, 045004, 2010
  18. Herzberg G, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, van Nostrand Co., Princeton (1950).
  19. Titov VA, Rybkin VV, Smirnov SA, Kulentsan AL, Choi HS, Plasma Chem. Plasma Process., 26(6), 543, 2006
  20. Brisset JL, Moussa D, Doubla A, Hnatiuc E, Hnatiuc B, Youbi GK, Herry JM, Naitali M, Bellon-Fontaine MN, Ind. Eng. Chem. Res., 47(16), 5761, 2008
  21. Ognier S, Iya-sou D, Fourmond C, Cavadias S, Plasma Chem. Plasma Process., 29(4), 261, 2009
  22. Malik MA, Plasma Sources Sci. Technol., 12, 26, 2003
  23. Sunka PS, Babicky V, Clupek M, Lukes P, Simek MS, Schmidt J, Cernak MC, Plasma Sources Sci. Technol., 8, 258, 1999
  24. de Luis A, Lombrana JI, Varona F, Menendez A, Korean J. Chem. Eng., 26(1), 48, 2009
  25. Bobkova ES, Shikova TG, Rybkin VV, High Energy Chemistry, 46, 141, 2012
  26. Locke BR, Shih KY, Plasma Sources Sci. Technol., 20, 034006, 2011
  27. Kuz’micheva LA, Titova YV, Maksimov AI, Surf. Eng. Appl. Electrochem., 44, 281, 2008
  28. Matsui Y, Takeushi N, Sasaki K, Hayashi R, Yasuoka K, Plasma Sources Sci. Technol., 20, 034015, 2011
  29. Li L, Nikiforov A, Xiong Q, Lu X, Taghizadeh L, Leys C, J. Phys. D-Appl. Phys., 45, 125201, 2012
  30. Klotz B, Barnes I, Becker KH, Golding BT, J. Chem. Soc.-Faraday Trans., 93, 1507, 1997
  31. Teton S, Mellouki A, LeBras G, Sidebottom H, Int. J. Chem. Kinet., 28, 291, 1996
  32. Bobkova ES, Smirnov SA, Zalipaeva YV, Rybkin VV, Plasma Chem. Plasma Process., 34(4), 721, 2014
  33. Bobkova ES, Shikova TG, Grinevich VI, Rybkin VV, High Energy Chemistry, 46, 56, 2012
  34. Staehelin J, Hoignt J, Environ. Sci. Technol., 16, 676, 1982
  35. Taube H, Bray WC, J. Am. Chem. Soc., 62, 3357, 1940
  36. Buhler RE, Staehelin J, Hoigne J, J. Phys. Chem., 88, 2560, 1984
  37. Brisset JL, Hnatiuc E, Plasma Chem. Plasma Process., 32(4), 655, 2012
  38. Semadeni M, Stocker DW, Kerr JA, Int. J. Chem. Kinet., 27, 287, 1995
  39. Linstrom PJ, Mallard WG, NIST Chemistry WebBook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg MD, 2015; http:// webbook.nist.gov, 20899.
  40. Du CM, Sun YW, Zhuang XF, Plasma Chem. Plasma Process., 28(4), 523, 2008
  41. Bubnov AG, Burova EY, Grinevich VI, Rybkin VV, Kim JK, Choi HS, Plasma Chem. Plasma Process., 27(2), 177, 2007
  42. Bobkova ES, Isakina AA, Grinevich VI, Rybkin VV, Russ. J. Appl. Chem., 85, 75, 2012
  43. Grinevich VI, Plastinina NA, Rybkin VV, Bubnov AG, High Energy Chemistry, 43, 138, 2009
  44. Bobkova ES, Grinevich VI, Kvitkova EY, Rybkin VV, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 54, 55, 2011