Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1606-1611, 2016
Effect of temperature on the electrochemical oxidation of ash free coal and carbon in a direct carbon fuel cell
The present study proposes the application of ash-free coal (AFC) as a primary fuel in a direct carbon fuel cell (DCFC) based on a molten carbonate fuel cell (MCFC). AFC was produced by solvent extraction using microwave irradiation. The influence of AFC-to-carbonate ratio (3 : 3, 3 : 1, 3 : 0 and 1 : 3 g/g) on the DCFC performance at different temperatures (650, 750 and 850 ℃) was systematically investigated with a coin-type cell. The performance of AFC was also compared with carbon and conventional hydrogen fuels. AFC without carbonate (AFC-to-carbonate ratio=3 : 0 g/g) gave a comparable performance to other compositions, indicating that the gasification of AFC readily occurred without a carbonate catalyst at 850 oC. The ease of gasification of AFC led to a much higher performance than for carbon fuel, even at 650 oC, where carbon cannot be gasified with a carbonate catalyst.
[References]
  1. Dicks AL, J. Power Sources, 156(2), 128, 2006
  2. Cao DX, Sun Y, Wang GL, J. Power Sources, 167(2), 250, 2007
  3. Dicks AL, J. Power Sources, 156(2), 128, 2006
  4. Cooper JF, Proc. 2nd International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, 375 (2004).
  5. Cherepy NJ, Krueger R, Fiet KJ, Jankowski AF, Cooper JF, J. Electrochem. Soc., 152(1), A80, 2005
  6. Selman JR in Fuel cell systems (Eds. Blomen LJM, Mugerwa MN), Plenum Press, New York, 384 (1993).
  7. Joon K, J. Power Sources, 61, 129, 1996
  8. Zecevic S, Patton EM, Parhami P, Carbon, 42, 1983, 2004
  9. Nabae Y, Pointon KD, Irvine JTS, J. Electrochem. Soc., 156(6), B716, 2009
  10. Liu QH, Tian Y, Xia C, Thompson LT, Liang B, Li YD, J. Power Sources, 185(2), 1022, 2008
  11. Jain SL, Nabae Y, Lakeman BJ, Pointon KD, Irvine JTS, Solid State Ion., 179(27-32), 1417, 2008
  12. Nabae Y, Pointon KD, Irvine JTS, Energy Environ. Sci., 1, 148, 2008
  13. Jain SL, Lakeman BJ, Pointon KD, Irvine JTS, Ionics, 13, 413, 2007
  14. Vutetakis DG, Skidmore DR, Byker HJ, J. Electrochem. Soc., 134, 3027, 1987
  15. Chen MM, Wang CY, Niu XM, Zhao S, Tang J, Zhu B, Int. J. Hydrog. Energy, 35(7), 2732, 2010
  16. Yoshida T, Takanohashi T, Sakanishi K, Saito I, Fujita M, Mashimo K, Energy Fuels, 16(4), 1006, 2002
  17. Li CQ, Takanohashi T, Saito I, Energy Fuels, 18(1), 97, 2004
  18. Muthuvel M, Jin X, Botte GG, in Encycl. Electrochem. Power Sources, Vol. 3 (Ed. Jurgen Garche), Elesevier, 158 (2009).
  19. Kim SD, Woo KJ, Jeong SK, Rhim YJ, Lee SH, Korean J. Chem. Eng., 25(4), 758, 2008
  20. Okuyama N, Komatsu N, Shigehisa T, Kaneko T, Tsutuya S, Fuel Process. Technol., 85(8-10), 947, 2004
  21. Kim JP, Choi HK, Chang YJ, Jeon CH, Int. J. Hydrog. Energy, 37(15), 11401, 2012
  22. Lee CG, Hur H, Song MB, J. Electrochem. Soc., 158(4), B410, 2011
  23. Lee CG, Fuel Cells, 12, 550, 2012
  24. Vamvuka D, Woodburn ET, Senior PR, Fuel, 74, 1452, 1995
  25. Vamvuka D, Woodburn ET, Senior PR, Fuel, 74, 1461, 1995
  26. Nagase K, Shimodaira T, Itoh M, Zheng Y, Phys. Chem. Chem. Phys., 1, 5659, 1999
  27. Lee CG, Kim WK, Int. J. Hydrog. Energy, 40(15), 5475, 2015
  28. Lee CG, Kim WK, Vu DL, Korean J. Chem. Eng., 32(9), 1784, 2015
  29. Mckee DW, Chatterji D, Carbon, 16, 53, 1978
  30. Lee CG, Kang BS, Seo HK, Lim HC, J. Electroanal. Chem., 540, 169, 2003
  31. Ruflin J, Perwich AD, Brett C, Berner JK, Lux SM, J. Power Sources, 213, 275, 2012
  32. Guo L, Calo JM, Dicocco E, Bain EJ, Energy Fuels, 27, 1712, 2013
  33. Liu QH, Tian Y, Xia C, Thompson LT, Liang B, Li YD, J. Power Sources, 185(2), 1022, 2008
  34. Lee CG, J. Electroanal. Chem., 701, 36, 2013
  35. Kojima T, Miyazaki Y, Nomura K, Tanimoto K, J. Electrochem. Soc., 154(12), F222, 2007