Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1551-1556, 2016
Trimetallic catalyst synthesized multi-walled carbon nanotubes and their application for hydrogen storage
Multi-walled carbon nanotubes (MWCNTs) were synthesized by rapid thermal decomposition method using trimetallic catalyst supported MgO. MWCNTs prepared via trimetallic catalyst shows much higher BET specific surface area compared to current monometallic and bimetallic catalyst. As-grown and pristine MWCNTs were found to adsorb nitrogen reversibly and their adsorption uptake exhibits type-II BET isotherm. Existence of small impurities, such as metal and metal oxides present in the MWCNTs, was confirmed by thermogravimetric analysis as well as via energy-dispersive X-ray spectroscopy. An over 10 wt% enhancement of hydrogen storage capacity of as-grown MWCNTs compared to pristine was found to be due to the presence of impurities. Fast kinetics and complete reversibility gives indication that the process responsible for hydrogen adsorption uptake in MWCNTs is physisorption. A linear relation between hydrogen uptake (~0.22 and 0.20 wt%) and equilibrium hydrogen pressure was obtained for both as-grown and pristine MWCNTs.
[References]
  1. Moradi SE, Korean J. Chem. Eng., 31(9), 1651, 2014
  2. Ibrahim SM, Korean J. Chem. Eng., 31(10), 1792, 2014
  3. Yang J, Sudik A, Wolverton C, Siegel DJ, Chem. Soc. Rev., 39, 656, 2010
  4. Benard P, Chahine R, Scr. Mater., 56, 803, 2007
  5. Lee SM, An KH, Lee YH, Seifert G, Frauenheim T, J. Am. Chem. Soc., 123(21), 5059, 2001
  6. Cheng HM, Yang QH, Liu C, Carbon, 39, 1447, 2001
  7. Simonyan VV, Johnson JK, J. Alloy. Compd., 330-332, 659, 2002
  8. Jorda-Beneyto M, Suarez-Garcıa F, Lozano-Castello D, Cazoria-Amoros D, Linares-Solano A, Carbon, 45, 293, 2007
  9. Shi SZ, Hwang JY, Int. J. Hydrog. Energy, 32(2), 224, 2007
  10. Benard P, Chahine R, Chandonia PA, J. Alloy. Compd., 446-447, 380, 2007
  11. Zhou L, Renew. Sust. Energ. Rev., 9, 395, 2005
  12. Yang Z, Grant DM, Wang P, Walker GS, Faraday Discuss., 151, 133, 2011
  13. Dillon AC, Heben MJ, Appl. Phys. A-Mater. Sci. Process., 72, 133, 2001
  14. Darkrim FL, Malbrunot P, Tartaglia GP, Int. J. Hydrog. Energy, 27(2), 193, 2002
  15. Hassan NHA, Mohamed AR, Zein SHS, Diam. Relat. Mat., 16, 1517, 2007
  16. Strobel R, Garche J, Moseley PT, Jorissen L, Wolf G, J. Power Sources, 159(2), 781, 2006
  17. Ren Y, Price DL, Appl. Phys. Lett., 79, 3684, 2007
  18. Patchkovskii S, Tse JS, Yurchenko SN, P. Natl. Acad. Sci. USA, 102, 10439, 2005
  19. Burian A, Dore JC, Fischer HE, J. Phys. Rev., B, 59, 1665, 1999
  20. Babaev PI, Dubinin MM, Isirikyan AA, Russ. Chem. Bull., 25, 1815, 1976
  21. Zacharia R, Kim KY, Kibria AKMF, Nahm KS, Chem. Phys. Lett., 412(4-6), 369, 2005
  22. Jorio A, Pimenta MA, Filho AGS, New J. Phys., 5, 139, 2003
  23. Melanitis N, Tetlow PL, Galiotis C, J. Mater. Sci., 31(4), 851, 1996
  24. Cinke M, Li J, Chen B, Cassell A, Delzeit L, Han J, Meyyappan M, Chem. Phys. Lett., 365(1-2), 69, 2002
  25. Jiang C, Kempa K, Zhao J, Phys. Rev. B, 66, 161404, 2002
  26. Li F, Wang Y, Wang D, Wei F, Carbon, 42, 2375, 2004
  27. Eswaranoorthy M, Sen R, Rao CNR, Chem. Phys. Lett., 304, 207, 1999
  28. Adamson AW, Physical Chemistry of Surfaces, Wiley, NewYork (1990).
  29. Zacharia R, Kim KY, Hwang SW, Nahm KS, Catal. Today, 120(3-4), 426, 2007
  30. Kim DY, Yang CM, Park YS, Kim KK, Jeong SY, Han JH, Lee YH, Chem. Phys. Lett., 413(1-3), 135, 2005
  31. Birch ME, Ruda-Eberenz TA, Chai M, Andrews R, Hatfield RL, Ann. Occup. Hyg., 57, 1148, 2013
  32. Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosen A, Bolton K, Nano Lett., 8, 463, 2008
  33. Cai J, Li L, Lv X, Yang C, Zhao X, ACS Appl. Mater. Interfaces, 6, 167, 2014
  34. Shiraishi M, Takenobu T, Yamada A, Ata M, Kataura H, Chem. Phys. Lett., 358(3-4), 213, 2002
  35. Wildgoose GG, Banks CE, Compton RG, Small, 2, 182, 2006